

ICT-PSP Project no. 270905
LINKED HERITAGE
Coordination of standard and technologies
for the enrichment of Europeana

Starting date: 1st April 2011
Ending date: 30th September 2013

File: D4-2_Specification-of-technologies-chosen.docx Page 1 of 326

Project Co-ordinator

Company name : Istituto Centrale per il Catalogo Unico (ICCU)
Name of representative : Rosa Caffo
Address : Viale Castro Pretorio 105, I-00185 Roma
Phone number : +39.06.49210427
Fax number : +39.06. 06 4959302
E-mail : rcaffo@beniculturali.it
Project WEB site address : http://www.dc-net.org

Deliverable Number: D 4.2

Title of the Deliverable: Specification of the technologies

chosen

Dissemination Level: Public Contractual Date of Delivery to EC: Month 18

Actual Date of Delivery to EC: October 2012

 Page 2 of 326

LINKED HERITAGE
Deliverable D4.2

Context

WP 4 Public private partnership

WP Leader Michael Hopwood (EDItEUR)

Task 4.3 Metadata model selection

Task 4.4 Technical specification

Task Leader Michael Hopwood (EDItEUR)

Dependencies D4.1

Author(s) Michael Hopwood (EDItEUR)

Contributor(s)

Reviewers Hugo Manguinhas, IST

Approved by:

History

Version Date Author Comments

0.1 21 Sept 2012 Michael Hopwood

0.2 05 October 2012 Michael Hopwood After internal review
by EDItEUR staff
and WG4 partners

1.0 13 October 2012 Michael Hopwood Revision as per
review by IST

File: D4-2_Specification-of-technologies-chosen.docx Page 3 of 326

LINKED HERITAGE
Deliverable D4.2

CONTENTS

1 EXECUTIVE SUMMARY ... 6
2 INTRODUCTION ... 7

2.1 BACKGROUND TO THIS DELIVERABLE ... 7
2.2 AIMS OF THIS DELIVERABLE .. 7

2.2.1 Task T4.3 - Metadata model selection ... 8
2.2.2 Task T4.4 - Technical Specification ... 8

2.3 SCOPE OF THE DELIVERABLE.. 9
2.4 CURRENTLY AVAILABLE SUPPLEMENTS TO THIS DELIVERABLE... 9

3 RESEARCH AND EXPERIMENTS UNDERTAKEN ...10
3.1 RESEARCH CONTEXT ..10
3.2 METHODS AND APPROACH..13
3.3 NOTE ON PRESENTATION OF TERMS AND SYNTAX ...15

4 LITERATURE REVIEW ...16
4.1 LITERATURE SEARCHES..16
4.2 BEST PRACTICE REPORT – PUBLIC PRIVATE PARTNERSHIP ...16
4.3 PREVIOUS AND CURRENT EUROPEANA PROJECTS ...17
4.4 CROSS-DOMAIN MAPPING: BEST PRACTICE ..18

4.4.1 The need for mappings: semantic and syntactic interoperability ...19
4.4.2 Efficient, structured communication: controlled value lists, schemas and ontologies20
4.4.3 Tools for mapping of XML data: schemas and XSLT ...21
4.4.4 Complementary approaches for schema mappings ...24
4.4.5 Conceptual Models (CIDOC-CRM, FRBR(oo) & Indecs) ...25
4.4.6 Contextual ontologies and the Vocabulary Mapping Framework (VMF)27
4.4.7 LIDO as an instance-level CIDOC-CRM implementation ...30

4.5 EXISTING MAPPING, AGGREGATION AND DISCOVERY SERVICES ..30
4.5.1 MINT ...30
4.5.2 Linked Heritage Terminology Management Platform (TMP) ..31
4.5.3 OntologyX ..32

4.6 MAPPING PRODUCT CLASS DATA TO AN INSTANCE SCHEMA ..32
4.7 MAPPING BASED ON AN UPPER ONTOLOGY ..33
4.8 DIRECT MAPPING OF ELEMENTS ...33
4.9 MAPPING EXEMPLARY INSTANCES WITHIN AGGREGATOR ..34
4.10 APPROACHES CHOSEN FOR THIS REPORT ..35

5 MAPPING COMPLEXITY FOR THIS PROJECT ...36
5.1 MINIMAL MAPPING – DIRECT TO ESE...36
5.2 MID-COMPLEXITY MAPPING – ESE VIA LIDO ...38
5.3 MAPPING TO EDM – BENEFITS AND CHALLENGES ...38
5.4 MAXIMUM COMPLEXITY SOLUTION – EXTENSION OR NEW SCHEMA? ...39
5.5 COMPLEXITY LEVEL CHOSEN FOR THIS REPORT ...39

6 TECHNICAL SPECIFICATION – LIDO MAPPINGS ..40
6.1 ONIX FOR BOOKS 3.0.1 MAPPING AS EXEMPLAR ...40
6.2 PRESENTATION OF MAPPINGS ..40
6.3 DOCUMENTING SEMANTIC MAPPINGS ...40
6.4 MAPPING SYNTAX USED IN ACCOMPANYING SPREADSHEETS..41

7 LIDO AS A TARGET SCHEMA FOR PRODUCT DATA ..42
7.1 LIDO SCHEMA OUTLINE ...42

7.1.1 LIDO “whole record” elements ..45
7.1.2 LIDO Descriptive Metadata – Classification ...46
7.1.3 LIDO Descriptive Metadata – Identification...46
7.1.4 LIDO Descriptive Metadata – Events ...47
7.1.5 LIDO Descriptive Metadata – Relation ..49

 Page 4 of 326

LINKED HERITAGE
Deliverable D4.2

7.1.6 LIDO Administrative Metadata – Rights Work ...49
7.1.7 LIDO Administrative Metadata – Record ...50
7.1.8 LIDO Administrative Metadata – Resource..50

7.2 LIDO ATTRIBUTES...51
7.3 SYNTACTIC-SEMANTIC ASPECTS ...53

7.3.1 Object and resource separation ..53
7.3.2 Event structure ...53
7.3.3 Internal and display elements ...53
7.3.4 Appellation Values and Sources ..53
7.3.5 Concept IDs and Terms ...54

8 ONIX FOR BOOKS 3.0.1 AND 2.1 MAPPINGS ...55
8.1 CONDITIONS FOR INCLUSION OF ONIX RECORDS ...55
8.2 ONIX CODE LISTS..55
8.3 ATTRIBUTE MAPPINGS (WHOLE LIDO RECORD) ..56

8.3.1 @type ..56
8.3.2 @xml:lang ...58
8.3.3 @label ...58
8.3.4 @encodinganalog ..59

8.4 ELEMENT MAPPINGS – LIDO RECORD ..59
8.4.1 Template – lidoWrap ..59
8.4.2 Template - @relatedencoding ..59
8.4.3 Template – lidoRecID ...59
8.4.4 Template – objectPublishedID ..60
8.4.5 Template – category ..60
8.4.6 Template – [default language of metadata] ...60

8.5 ELEMENT MAPPINGS – LIDO DESCRIPTIVE ..61
8.5.1 Classification – Object / Work Type ..61
8.5.2 Classification – Classification ..62
8.5.3 Identification – Title ...65
8.5.4 Identification – Inscriptions ..69
8.5.5 Identification – Description ...69
8.5.6 Identification – Measurements ...72
8.5.7 Identification – Event (lido:Creation)...73
8.5.8 Identification – Event (from onix:TextContent) ..80
8.5.9 Identification – Event (from onix:CitedContent)...81
8.5.10 Identification – Event (from onix:Prize) ...82
8.5.11 Identification – Event (lido:Publication) ..82
8.5.12 Identification – Relation (lido:subjectActor) ..84
8.5.13 Identification – Relation (lido:subjectConcept) ..84
8.5.14 Identification – Relation (onix:Collection) ...84
8.5.15 Identification – Relation (onix:ProductPart) ..85
8.5.16 Identification – Relation (onixRelatedProduct) ..86
8.5.17 Identification – Relation (onix:RelatedWork) ..86

8.6 ELEMENT MAPPINGS – LIDO ADMINISTRATIVE ...86
8.6.1 Rights Work ...86
8.6.2 Record ...87
8.6.3 Resource ..89

8.7 PROGRESS OF ONIX 2.1 MAPPING ...92
9 DDEX MAPPING ..93
10 EIDR MAPPING ...95
11 IPTC CORE AND EXTENSION MAPPING..97
12 TECHNICAL SPECIFICATION – AGGREGATION PLATFORM ... 104

12.1 DATA UPLOAD AND PRE-PROCESSING .. 104
12.1.1 Namespaces and schemas.. 104
12.1.2 EIDR... 104
12.1.3 IPTC Core and Extension ... 105

12.2 UPDATES .. 105
13 METADATA MODEL SELECTION... 107

 Page 5 of 326

LINKED HERITAGE
Deliverable D4.2

13.1 OTHER FINDINGS .. 116
13.1.1 Potential for increased technical interoperability between sectors 116
13.1.2 Potential for generating Linked Data .. 116
13.1.3 Foundations for common standards in rights data communication 118

14 CONCLUSIONS .. 119
14.1 SUMMARY .. 119
14.2 RECOMMENDATIONS ... 119

14.2.1 For Linked Heritage Work Group 4 ... 119
14.2.2 For commercial sector data contributors .. 120
14.2.3 For Linked Heritage .. 120
14.2.4 For Work Group 2 .. 121
14.2.5 For the LIDO working group ... 121
14.2.6 For Work Group 3 .. 124
14.2.7 For Work Group 5 .. 125
14.2.8 For CIDOC-CRM and FRBRoo .. 127
14.2.9 For Europeana ... 127
14.2.10 For EDItEUR and other commercial standards bodies .. 128

14.3 CLOSING EVALUATION.. 128
15 REFERENCES.. 130

15.1 CITED IN THE REPORT ... 130
15.2 INDICATED READING LIST .. 131

16 APPENDIX 1 – GLOSSARY OF TERMS ... 133
17 APPENDIX 2 – MAPPING COMMERCIAL DATA TO CULTURAL HERITAGE SCHEMAS 136

17.1 DIFFERENT KINDS OF ENTITY DESCRIBED BY COMMERCIAL SECTOR AND HERITAGE SECTOR DATA 136
17.1.1 Solutions – exemplary item cataloguing or class property mapping? 141

17.2 RELATIVE FREQUENCY OF TRANSACTIONS IN EACH SECTOR .. 142
17.2.1 Solutions – multiple resolution or planned future events? ... 143
17.2.2 Modelling note – publisher as “repository” for product type?.. 144

17.3 SEMI-STATIC ARCHIVES OR DYNAMIC DATAFLOWS .. 144
17.3.1 Solution – business rules and revised technical platform? ... 145

18 APPENDIX 3 –CIDOC-CRM AND FRBROO MODELS FOR PRODUCTS ... 146
19 APPENDIX 4 – ONIX FOR BOOKS 3.0 TO LIDO MAPPING ... 148

19.1 READING SYNTACTIC AND CONDITIONAL MAPPINGS IN XSLT ... 148
19.2 XSLT VARIABLES USED TO REPRESENT ONIX CODE LISTS .. 148
19.3 ONIX 3.0.1 TO LIDO MAPPING: FULL XSLT SCRIPT ... 153
19.4 ONIX ELEMENTS NOT MAPPED .. 322

20 APPENDIX 5 – GUIDELINE FOR COMMERCIAL SECTOR DATA PROVIDERS IN LINKED HERITAGE 323
20.1 CATEGORIES OF COMMERCIAL DATA CONTRIBUTIONS .. 323
20.2 SIGNATURE OF THE DATA EXCHANGE AGREEMENT .. 324

21 APPENDIX 6 – EXAMPLE OF PROPOSED ENHANCED LIDO EXPRESSIONS 325
22 APPENDIX 7 – DRAFT GENERALISED CONTACT DETAILS MODEL.. 326

File: D4-2_Specification-of-technologies-chosen.docx Page 6 of 326

LINKED HERITAGE
Deliverable D4.2

1 EXECUTIVE SUMMARY

The European Commission’s “Comité des Sages” report on digitisation, “The New Renaissance”,
expressed the desirability of enabling online discovery of contemporary, born-digital and digitised cultural
works, which, because they are currently in-copyright (and may be in-commerce), have not been
digitised, and so are often invisible online; the so-called “20th Century Black Hole”. Addressing this need,
Work Group 4 of Linked Heritage (linkedheritage.eu) aims to specify how metadata describing relevant
commercial products in four media – books, music recordings, film and TV, and photographs – can be
aggregated and integrated with cultural heritage data in portals like Europeana (europeana.eu).

WG4’sfirst deliverable (D4.1 Best Practice Report – Public-Private Partnership; available at
linkedheritage.org/getFile.php?id=283) described the benefits of this approach to both the heritage and
commercial sectors, in broad outline how it could be achieved (both technically and in practical, legal-
commercial terms), and laying a foundation for detailed plans by describing the most prominent industry
standards in each of four media sectors.

The current report, D4.2 Specification of Technologies Chosen, builds on the findings of D4.1 with the
results of Tasks T4.3, an empirical estimate and evaluation of potential commercial data contributors, and
T4.4, an evidence-based technical specification for aggregating such data at scale. The current state of
theory and practice in data integration is reviewed, focussing on efforts to achieve cultural-commercial
sector interoperability, and potential solutions for the problem at hand are considered for feasibility given
the limited resources. An experiment was undertaken to assess the feasibility of applying Linked
Heritage’s existing data integration format, LIDO, and aggregation platform, MINT, to the previously
identified industry standard metadata formats. The experiment’s focus was the ONIX for Books 3.0
mapping described explicitly in Linked Heritage’s Description of Work, although DDex for recorded music,
EIDR for audiovisual materials and IPTC for photos were also investigated. This was done with the
knowledge and cooperation of the relevant standards bodies, to achieve a reliable and standardised
result in accordance with accepted industry best practice.

The report finds that, although other technical solutions exist – and some have been applied successfully
to integration of commercial and heritage data – Linked Heritage’s existing pragmatic solution is
adequate to this task in the case of ONIX for Books 3.0 and shows promising signs for the other three
schemas. There is basic semantic compatibility in practice, confirming the theoretical assumptions of
Linked Heritage D4.1. The existing ONIX mapping can be further tested and refined in support of
discussions with potential commercial sector data contributors, and experiments on their test and
prototype data, as work towards D4.3.

In order to progress from semantic schema mappings to a full-scale aggregation of data, significant
technical questions remain to be answered in the cases of IPTC and EIDR data, and several enhancements
to the LIDO schema and to the MINT aggregation software are proposed to bring Linked Heritage’s
aggregation model in line with current commercial metadata best practice, as exemplified in the schema
mappings considered.

Sources of data for each standard are described according to the likely amounts and quality of data
available, and the costs, legal framework and technical requirements for accessing them. These themes
will be expanded upon in the remaining deliverable from this Work Package.

Finally, the report recommends specific work to assist these enhancements, both within Linked Heritage
and also the wider cultural heritage community, including Europeana itself and the international cultural
heritage documentation committee, CIDOC (network.icom.museum/cidoc/).

http://www.linkedheritage.eu/
http://www.europeana.eu/
http://www.linkedheritage.org/getFile.php?id=283
http://network.icom.museum/cidoc/

File: D4-2_Specification-of-technologies-chosen.docx Page 7 of 326

LINKED HERITAGE
Deliverable D4.2

2 INTRODUCTION

“That belongs in a museum.”

 - Henry Jones Junior, in Indiana Jones and the Last Crusade, 1989

“Yon second-hand bookseller is second to none in the worth of the treasures which he dispenses.”

 Leigh Hunt, On the Beneficence of Bookstalls
1
.

The definition of cultural heritage
2
, that which belongs in museums, galleries, libraries and archives, is officially

framed in general, abstract terms. One might expect digital libraries, and especially those on a national or EU-
wide scale, to follow this familiar, somewhat academic route. But Europeana3 and the European Commission’s
Comité des Sages’ report4 have taken a pragmatic approach as to what should be visible and accessible to
European citizens, both in the heritage sector and the commercial cultural industries, and this goes far beyond
the traditional categories of unique items witnessing to historic or culturally formative events, to encompass
the industrially mass-produced products of contemporary cultural industries: books, recorded music, film and
TV, and photographs.

The previous deliverable of Linked Heritage Work Package 4 described the metadata available in the
commercial cultural industries; this report documents work done to enable that metadata to be integrated
with the existing cultural heritage corpus.

2.1 BACKGROUND TO THIS DELIVERABLE

The desire to integrate information and the metadata describing it across multiple domains is a less recent
phenomenon than it might first appear, going back perhaps at least as far as the 19th Century explosion of
publication and the “documentalists” who strived to organise it (van den Heuvel & Rayward, 2011). In fact, the
growing sense of “information overload” and the need to develop tools for managing and navigating the
“deluge” means that information integration is at least implicit in most modern library and information work,
as well as becoming a key component in commercial enterprise data management.

Another, complementary motivation may be the sense that, for the first time, through new networked
technology, and convergence between theory and practice across media and disciplines, it may be possible to
gain an overview of previously scattered cultural information; the experience of the “grand tour” through
European history and culture but at the level of fine detail, sharing some of the intimacy of the painstaking
curators and students of artefacts and ideas, without all of the normally requisite years of preparation.

2.2 AIMS OF THIS DELIVERABLE

This deliverable reports the fulfilment by Linked Heritage Work Group 4 of Tasks T4.3 and T4.4, as well as some
of the more general objectives, relevant to the Tasks. WG4 fulfilled these tasks by:

 Communicating the scope of the problem of integrating commercial sector metadata with Europeana
(and cultural heritage data generally);

 Surveying and selecting among the available approaches with Europeana, other similar projects and
the professional and academic literatures;

1 Quoted in Hoyt's New Cyclopedia Of Practical Quotations, 1922, p. 649.
2 See Linked Heritage, Deliverable D4.1, Appendix 2 – Glossary of Terms
3 See, for example, Europeana’s collection development policy
[http://pro.europeana.eu/documents/866205/0/EV1-AF-ContentDevStrategy.pdf] and 2011 annual report
[http://pro.europeana.eu/documents/858566/ade92d1f-e15e-4906-97db-16216f82c8a6]
4
 See http://dx.doi.org/10.2759/45571

http://dx.doi.org/10.2759/45571

 Page 8 of 326

LINKED HERITAGE
Deliverable D4.2

 Producing and describing demonstrators for some approaches, evaluating these for effectiveness in
integrating commercial sector data into Europeana;

 Proposing practical ways to address the opportunities and challenges for public-private partnerships
with Europeana in future.

Drawing on the Linked Heritage Description of Work (DoW), the Work Group understood its tasks leading to
this deliverable as follows.

2.2.1 Task T4.3 - Metadata model selection

“The third task will be to assess the various knowledge resources identified above (T4.1) and to select the
metadata model which offers the best potential for sizeable contributions to Europeana by the private sector.
Selection criteria will include

 Established user base;

 Adherence to standards and/or standards status in its own right;

 Demonstrated interoperability with other metadata models, including those familiar to the public
sector;

 Demonstrated and/or potential ease of integration with the technologies selected in other thematic
work-packages (i.e. Linked Data, PID, selected metadata models);

 Maturity and quality of available technical implementation, documentation and support.”

For this task, “the various knowledge resources identified above” was understood to mean the standard
identifiers, metadata schemas and related services described in D4.1, Best Practice Report – Public-Private
Partnership, inasmuch as they are used in actual practice to create corpora of data. In this light, “the metadata
model which offers the best potential” will be the most promising model from each sector, making a total of
four models selected.

The above selection criteria were accepted as helpful and important by the Work Group, and expanded to
include five others of importance technically and with the final WP4 deliverable in view:

 Technical access to data;

 Legal access to data;

 Cost of access to data;

 Potential to enrich metadata content;

 Links into existing cultural heritage metadata corpus.

Simply put, these criteria will form the basis of a cost-benefit analysis of potential services to deliver the
integrated data.

2.2.2 Task T4.4 - Technical Specification

“The fourth task of this work-package will be to specify the technical components of the large scale
implementation (validation) platform (see WP5) which are concerned with ingestion of private sector content
into Europeana, including

 The metadata models used;

 Mapping these metadata models to ESE/EDM (possibly using an interim metadata model).”

This task constituted the empirical work of ingesting samples of commercial data into the MINT aggregator and
attempting to create mappings of the source schema’s semantics to the LIDO schema, to discover how far such
mapping is possible, given the different objects of interest of the source and target descriptions (unique items
versus classes of products – see D4.1, section 4.3. and this report, section 18). It also encompasses reviewing
the capabilities of MINT to deal with the requirements of commercial data for updates and on-going data
management (see D4.1, section 5.3.5.).

 Page 9 of 326

LINKED HERITAGE
Deliverable D4.2

2.3 SCOPE OF THE DELIVERABLE

The above general aims and tasks include some that seem at face value extremely far-reaching; for example,
estimating how much product data is available from the entire EC’s creative industries, mapping extremely
detailed data schemas to the (in principle) indefinitely extensible LIDO schema, and specifying a workable
technical model (or models!) for a production-scale commercial data aggregation service.

However, partly through further reflection on the issues raised in D4.1, and partly due to detailed knowledge
of the metadata schemas mapped for this deliverable, it was understood that in order to make progress, the
aims had to be operationalised in concrete, limited and extremely focussed ways.

Therefore, although the full spectrum of best practice, possible experimental approaches, and actual technical
work is considered here and described as fully as possible, the report describes only the ONIX mapping
required by the Description of Work in detail, and in order to provide maximum value and set a milestone for
best practice, provides outlines and high-level specifications for mappings in the other domains.

2.4 CURRENTLY AVAILABLE SUPPLEMENTS TO THIS DELIVERABLE

Full exploration of the domains to be integrated produced extensive and potentially useful results beyond the
expected outcomes. Several supplements to this deliverable are available upon request from EDItEUR:

1. ONIX for Books 2.1 full mapping documentation (spreadsheet);
a. IPTC Core and Extension: semantic mapping document (spreadsheet);

2. EIDR:
a. Semantic mapping document (spreadsheet);
b. MINT mapping in XSLT;

3. DDex:
a. Semantic mapping document (spreadsheet);
b. MINT mapping in XSLT.

In addition, advice and assistance in using the mappings for a schema can be offered depending on interest
and collaboration from potential data providers using that schema to support the testing and prototyping work
of D4.3.

Note that these documents are not part of the current deliverable; they represent value added by Work Group
4 partners during the creation of D4.2, above and beyond the Description of Work. They are offered to support
the promotion of Linked Heritage’s objectives through the Best Practice Network, especially in demonstrating
the project’s value to commercial players in the photo, music and AV domains, and mature versions may be
uploaded to the project website or published as part of D4.3.

 Page 10 of 326

LINKED HERITAGE
Deliverable D4.2

3 RESEARCH AND EXPERIMENTS UNDERTAKEN

The first deliverable (D4.1) of Work Package 4 took an expertise-gathering approach relying on expert contacts
in the relevant content industries and standards communities, synthesising and clarifying the best practice
across sectors. This deliverable describes practical experiments in data mapping and integration, although of
course based on the standards and best practice described in D4.1, with a further literature review and
continued advice and assistance from the network of interested experts, primarily within the standards bodies
themselves, but also, especially in the case of ONIX for Books and IPTC, members of the standard user
communities.

3.1 RESEARCH CONTEXT

The Linked Heritage consortium, continuing the work of the earlier ATHENA and MINERVA projects, has
developed a well understood and tested standard method for aggregating cultural heritage data for
preservation, standards development and experimentation, and contribution to Europeana. This forms the
context and starting point for the current work. It is useful to review the existing process for its role in the
method and findings of the experiments and as a benchmark for comparison with the proposed solutions.

Linked Heritage, much like other Europeana Network projects, acts as aggregator, coordinator and metadata
gateway for its partners’ contributions to Europeana

5
 as outlined below:

The first step of the Linked Heritage process constitutes creation of textual metadata describing the cultural
heritage object, and usually linking them to associated digitised surrogates, such as photographs of historical
artefacts, scans of manuscripts, sound samples from recordings, or digitised AV, accessible somehow on the
institutions’ websites. This is valuable and highly authoritative data since it is produced by the object’s curating
institution, but its format may be more or less standardised. The ATHENA survey on existing standards applied
by European museums (and other heritage institutions)

6
 found that out of 133 respondent institutions, 23

used idiosyncratic local data formats, a number significantly higher than for any single standard format. The
most commonly used standard was Dublin Core7 (22 institutions), which is usually substantially altered for

5 A more detailed version of this diagram is found in Appendix 4.
6 ATHENA Deliverable D3.1 – available at: http://www.athenaeurope.org/index.php?en/149/athena-
deliverables-and-documents
7
 The survey did not record the serialisation and/or data model, but given the experience of Europeana and

ATHENA, probably it was some type of flat XML structure rather than an RDF representation.

Heritage
institution

•Curation

•Digitisation

•Metadata
creation

Linked
Heritage

•Metadata
curation

•Local mappings
to LIDO

•Standard
mapping to ESE

Europeana
•Metadata

curation (ESE)

•Preview image
creation

http://www.athenaeurope.org/index.php?en/149/athena-deliverables-and-documents
http://www.athenaeurope.org/index.php?en/149/athena-deliverables-and-documents

 Page 11 of 326

LINKED HERITAGE
Deliverable D4.2

each local use
8
 and in effect adds to the “local standards” number, making it more significant. The need for a

central, broadly-applicable aggregating standard to avoid mapping an extra 43 “standards” to Europeana’s
schema is clear. In any case, once the data describing heritage objects and collections is identified and
approved for contribution to the project, it can be aggregated in the second step.

A large part of the value added by Linked Heritage is at this second, intermediating stage, since after upload, it
is normalised by a semantic mapping to the LIDO data harvesting schema

9
. This standard format solves, at

least for the cultural heritage domain, the critical barriers to interoperability and useful search endemic to
schemas like Dublin Core10. Because LIDO is based on the most comprehensive and widely adopted existing
schemas, and mostly adopts their definitions, it is appropriate for the domain-specific data of most
contributors. Its major strength as an aggregation format, though, is in its harmonisation with the CIDOC-
CRM11, which makes its structure more flexible and extensible, by generalising most of its conceptual
categories and explicitly filling in the relationships between them, which are usually implicit in data schemas,
and often ambiguous or non-existent in schemas like Dublin Core. Because Linked Heritage transforms all
metadata contributions to LIDO, it creates an immense resource of rich, interoperable data that can be of
value to the contributing institutions and the heritage sector more generally. To portals such as Europeana, it
is a more helpful long-term content provider, because having normalised all source datasets, it is able to
provide one standard mapping to the vastly simpler, “dumbed-down” Europeana Semantic Elements schema
(or ESE, a Dublin Core “application profile”), and adapt this one mapping whenever the Europeana schema
changes.

The final step of publication to Europeana (or some other portal, or data endpoint, potentially) can thus be
managed centrally, but with a fine control and agility impossible for heritage institutions concerned with their
“business as usual” and of course other projects. This has been demonstrated, for example, in the response of
Linked Heritage to the recent introduction of the requirement12 for all Europeana contributors to sign a CC0
waiver13 of all current and future rights in their data; as it may not be possible, or desirable, for many Linked
Heritage partners to release their entire corpus of data this way, a “filtering” option has been introduced into
the aggregation server to allow fine control of the level of detail published. At this point it should also be noted
that the stated rationale14 for Europeana’s move to CC0 for textual metadata is to enable publication of Linked
Open Data15. The proposed model for this, already tested in Europeana’s pilot dataset publication in 201116, is
Europeana Data Model (EDM), essentially consisting of a somewhat extended version of ESE17, and thus only

8 So-called “application profiles” of Dublin Core for any serious use tend to require inclusion of elements
entirely foreign to the Dublin Core namespace; in other words, they are in fact distinct new standards which
happen to include DC elements. See, for example, the Scholarly Works Application Profile for academic journal
eprints [http://www.ukoln.ac.uk/repositories/digirep/index/Scholarly_Works_Application_Profile] or the
MICHAEL-EU profile for heritage collection descriptions [http://www.ukoln.ac.uk/metadata/michael/michael-
eu/dcap/]
9
 www.lido-schema.org/

10
 See ATHENA Deliverable D3.2, section 3.3 for a full discussion of the inadequacy of Dublin Core to even

simple searches over rich data, and how LIDO demonstrates significant improvement in this and other respects
[http://www.athenaeurope.org/index.php?en/149/athena-deliverables-and-documents]. Note also that
Dublin Core Metadata Element set per se is not a schema, so in practice every “application profile” developer
is required not only to rethink the semantics but also the syntax of their implementation of DC.
11

 See explanation of LIDO’s basis in existing standards and CIDOC-CRM harmonisation at
http://network.icom.museum/cidoc/working-groups/data-harvesting-and-interchange/lido-overview/related-
standards/
12 The new Europeana “Data Exchange Agreement” – see http://pro.europeana.eu/web/guest/support-for-
open-data/faqs
13 See “About CC0” at http://creativecommons.org/about/cc0
14 See “Support for Open Data at http://pro.europeana.eu/web/guest/support-for-open-data
15 See the W3C pages on Linked Data for details of the connection between “linking” and “opening” data:
http://www.w3.org/standards/semanticweb/data
16 Described in a paper at http://dcevents.dublincore.org/index.php/IntConf/dc-2011/paper/view/55
17 EDM is fully described here: http://pro.europeana.eu/web/guest/edm-documentation - although it
represents significant progress beyond the “flat” ESE schema consisting mainly of the Dublin Core (qualified)
Metadata Element set, the fact remains that the added terms largely address the problems which arose from
representing a complex aggregation workflow (see the full diagram below in this section, 3.1) in a simple,

http://www.ukoln.ac.uk/repositories/digirep/index/Scholarly_Works_Application_Profile
http://www.ukoln.ac.uk/metadata/michael/michael-eu/dcap/
http://www.ukoln.ac.uk/metadata/michael/michael-eu/dcap/
http://www.lido-schema.org/
http://www.athenaeurope.org/index.php?en/149/athena-deliverables-and-documents
http://network.icom.museum/cidoc/working-groups/data-harvesting-and-interchange/lido-overview/related-standards/
http://network.icom.museum/cidoc/working-groups/data-harvesting-and-interchange/lido-overview/related-standards/
http://pro.europeana.eu/web/guest/support-for-open-data/faqs
http://pro.europeana.eu/web/guest/support-for-open-data/faqs
http://creativecommons.org/about/cc0
http://pro.europeana.eu/web/guest/support-for-open-data
http://www.w3.org/standards/semanticweb/data
http://dcevents.dublincore.org/index.php/IntConf/dc-2011/paper/view/55
http://pro.europeana.eu/web/guest/edm-documentation

 Page 12 of 326

LINKED HERITAGE
Deliverable D4.2

superficially more robust and flexible than Dublin Core. The lack of a Europeana-wide normalisation pipeline
for the core EDM data, and the existence of more detailed and explicit relationships in LIDO mean that LIDO is
probably better positioned for direct production of Linked Data because that relies on the capacity for
decomposing schematised data into atomic, unambiguous and reliable statements (“triples”)18. The full
situation is summarised by this diagram of the data flows between the heritage organisation, Linked Heritage
and Europeana, internally and onto the open Web:

Full aggregation workflow for Europeana and Linked Heritage

Key terms identified in the above diagram are:

 “Cultural heritage object” (CHO), the object of interest and value to be described. It may or may not
be “born-digital” but digitisation at some stage is mandatory for inclusion in the workflow.

 “Digital object” (DO), the highest quality image(s) produced by digitisation of the original CHO. This is
normally displayed on the open Web at the contributor’s Web site, together with some contextual
information, including how to access the CHOand the rights associated with that access.

 Textual metadata, derived from the LIDO data stored in Linked Heritage’s servers.

 Image previews, derived from the DO, keeping all the same image rights as the DO.

 Links back to the DO in context, implying that the context for viewing the DO and its relationship to
the CHO is controlled exclusively by the contributor.

resource-based format. Altering the entity assignments of the Dublin Core properties and adding some
relations relevant to the heritage domain’s best practice are positive steps but still do not change the need to
further specify the semantics of the (unchanged) DC properties themselves.
18 See for example the initial investigation into creating linked data from LIDO by several Linked Heritage
partners (Tsalapati et al., 2012), at http://www.cidoc2012.fi/en/File/1663/simou.pdf - this also explains some
of the limitations of EDM as compared with LIDO, the domain-specific heritage aggregation schema. EDM is
specifically intended to produce linked data, but, also as a consequence of the problems noted in the footnote
above, “…the quality of Linked data implementations is only as good as the data you are linking to, and the
meaning and contextualisation of the link you use” (see
http://www.doi.org/doi_handbook/5_Applications.html#5.4) – these essential quality issues are much more
fully addressing in LIDO than in EDM.

http://www.cidoc2012.fi/en/File/1663/simou.pdf
http://www.doi.org/doi_handbook/5_Applications.html#5.4

 Page 13 of 326

LINKED HERITAGE
Deliverable D4.2

Note also in this diagram that LIDO data is never directly exposed to the open Web.

3.2 METHODS AND APPROACH

Whereas the first deliverable of Linked Heritage synthesised the existing knowledge on standards and best
practice in the cultural heritage and commercial metadata communities, and thus defined the terms of the
problem of integrating them in broad terms, it was not able to make progress in providing solutions, beyond
identifying two key areas which provide proof-of-concept:

a) The existence of some projects and services, so far exclusively in the books and audio-visual domains,
which embody a public-private partnership basis for data integration of commercial products (mostly,
but not always, together with heritage counterparts) for discovery and links to access;

b) Conceptual and practical inroads into standards-based heritage-commercial sector interoperability
(mainly but not exclusively in the books domain).

The examples identified in point a) demonstrate that the work in the current deliverable can be worthwhile, as
at least in some cases, a level of financial and institutional commitment, and willingness to collaborate across
sectors has moved beyond mere discussion. The partnerships in a), which were described in D4.1, section 8,
were restricted to a single media sector each, but the aim of this research is to specify how to build on the
more comprehensive tools developed in point b), as outlined in D4.1, section 5.4., to scale-up the basic
partnership model of “culturally-relevant metadata for potential sales via retail links”, across all four sectors,
and preserving the maximum data richness.

As an empirical attempt to verify exactly this combination, the current research is relatively unprecedented.
Previous attempts at all-round coverage have been a very high level of abstraction, which may not be suitable
for practical, day-to-day data exchange19. Innumerable examples of full-schema mappings, including for
commercial schemas like ONIX20 have aimed at one-to-one compatibility with another specialised schema,
rather than, as LIDO does, explicitly enabling re-use outside the immediate domain of interest of the source
schemas.

This work is best understood as a first investigation to determine the precise extent of progress in practical
semantic interoperability between the whole cultural heritage and commercial sectors, whose results will
include practical advice for the short term integration of information, recommendations for both sectors, and
specifications for new tools or revisions to existing standards to implement the known best practice. As noted
above in 2.3., the practical work strove to find a very practical balance between the ideal solution and the
already existing, more or less ad hoc compromises. This was based on following the Linked Heritage model as
explained in the previous section (3.1.) with three important modifications:

19

 See Stein, et al. (2005).
20

 See http://www.loc.gov/marc/onix2marc.html and http://www.editeur.org/96/ONIX-and-MARC21/

http://www.loc.gov/marc/onix2marc.html
http://www.editeur.org/96/ONIX-and-MARC21/

 Page 14 of 326

LINKED HERITAGE
Deliverable D4.2

The most salient difference in aggregating commercial product data, in contrast to heritage object data, is that
we are concerned with the “lifecycle” of a generic, mass-produced product as it passes between various
partners in a supply chain, in contrast with the “life history” of a unique artefact or found object in the
museum world, considered as “an illustration, or witness of the past”21. A full discussion of the contrast is
found in our previous report, D4.1., sections 5.1. to 5.3. As before, metadata creation is part of the first stage,
but rather than taking an individual commercial cultural organisation (e.g. a single book publisher, record
distributor, film company or photo library) as the starting point and expecting to map many local schemas to
LIDO, we take the sector as a whole, represented by the relevant industry data standard (full descriptions are
found in the relevant sections of D4.1):

Media industry sector Product data standard D4.1 section:

Book publishing ONIX for Books 6.3

Recorded music DDex ERN 6.4

Film and TV EIDR / ISAN 6.5

Photography IPTC Core and Extension / XMP 6.6

The use of relevant sector standards should have several benefits for contributors and for Linked Heritage /
Europeana:

 Existing companies that use their industry standards can most easily and effectively contribute data as
Linked Heritage partners, and rely on the proven suitability of the standard data format to express the
creative integrity and legal-commercial identity of their products; others can adopt the standard,
possibly with support from the relevant experts, and gain the associated benefits of efficiency and
savings in data exchange IT, potential improvements in local systems design, ability to exchange
product information with a wider range of partners, and so on;

 The heritage sector can expect richer and better structured data, probably with more inherent
cultural value, and certainly more robust design, making it more suitable for data integration and
linked data applications.

As will be explained below in section 4.4., the best practice for creating a semantic mapping between two
existing standards is to create an agreed statement of equivalence that is itself “standardised”, in the sense of
resulting from understanding and authorisation of all parties involved (at minimum, the maintaining bodies of

21

 Doerr, M. (2010) Technological Choices of the ResearchSpace Project. Available at:
http://www.researchspace.org/researchspace-concepts/technological-choices-of-the-researchspace-project

Media
sector

•Product
lifecycle

•Metadata
creation

•Industry
standards

Linked
Heritage

•Metadata
curation

•Agreed
mappings to
LIDO for each
sector

Europeana

•Metadata
curation (ESE)

•Preview image
creation

•Links to retail
environment

http://www.researchspace.org/researchspace-concepts/technological-choices-of-the-researchspace-project

 Page 15 of 326

LINKED HERITAGE
Deliverable D4.2

the two standards mapped). This is the key difference at the Linked Heritage stage of the hypothetical
workflow, and the point where EDItEUR and the other Work Group 4 partners add the most value, EDItEUR
being one of the sector standards bodies itself, and having a successful history of involvement in
interoperability work of this kind; EDItEUR, MVB and mEDRA providing governance and (for MVB and mEDRA)
registration of persistent identifers.

As explained in D4.1., sections 4.3. and 5.4., the library sector, is a convenient intersection point where the
object of interest for identification and description, and the methods for describing it, overlap in terms of
uniqueness and context, since here commercially published, mass-produced books are documented in ways
that often tend to the more purely historical approach of museums proper. Hence there is existing work to
build on and considerable expertise to draw on. As demonstrated in Appendix 3, the modelling approach
developed for library data is applicable across all media sectors.

Finally, as before, the LIDO dataset, or a subset thereof (divided either by records, fields, or both), may be
contributed to Europeana via an appropriate mapping to ESE (soon to be superseded by EDM). At this level
two aspects are essential to the legal and commercial viability of the whole “pipeline”, since they are intrinsic
to the reason for creating and sharing the product data at all:

 Inclusion of links to at least one source (this could be the producer or publisher) for the product;

 Acceptable selection and arrangement of data elements for display to potential buyers.

Providing retail links per se is technically relatively straightforward; selection and maintenance of appropriate
links is a far more challenging problem, technically and commercially. Similarly, although technical solutions for
mapping LIDO to ESE (and by virtue of its similarity, EDM) already exist or can be envisaged, the loss of detail
and flexibility in the transition to ESE/EDM cannot be addressed only by technical means22.

Because so much depends on tailoring the ESE/EDM terms to the local use (as explained in section 3.1) this is
more a matter of considering the commercial needs informing customer-facing display within Europeana
rather than concern for retaining maximum semantic value. Therefore these aspects of the problem have been
investigated during the work on Tasks T4.3 and T4.4 but full discussion will be provided in the final deliverable
of Work Package 4, D4.3 Specification of legal/licensing environment.

Taking all this into account, the following literature review thus covers the full range of academic and business
research, several types of tools, standards and systems, and the outcomes of projects and standardisation
efforts.

3.3 NOTE ON PRESENTATION OF TERMS AND SYNTAX

Throughout this report technical terms and syntactic symbols (mainly from XML) are used within the narrative
text. Therefore they have been presented in a variety of forms suitable to reading; terms with specific
definitions are always written in Title Case; terms taken from an XML schema in the case used in that schema
(for example, CamelCaps or lowerCamelCase) and XML elements themselves written with <angle_brackets>
and in a 10pt fixed-width font when quoted from a piece of XML or XSLT. Terms are often presented
with a prefix as in namespace:term to avoid confusion when two or more schemas are discussed together.
Finally, an XPATH is sometimes presented truncated to the last few elements, when the root path is clear from
the context of the discussion. The full XPATHs are always available in the mapping documentation provided in
this report and its appendices and attachments.

22

 Other than enhancing the ESE and EDM models themselves.

File: D4-2_Specification-of-technologies-chosen.docx Page 16 of 326

LINKED HERITAGE
Deliverable D4.2

4 LITERATURE REVIEW

As in the previous deliverable, a mixed research process informed the compilation of this report and the
context for the technical decisions taken in the practical work. Just as in D4.1, the approach of the literature
review is not academic but technical and results- and standards-oriented in its description of state-of-the-art,
delineation of approaches, and selection of suitable methods.

4.1 LITERATURE SEARCHES

The same library science journals and journal collections were consulted as for D4.1
23

 as well as a selection of
Web searches focussed on the ac.uk and .edu domains. Typical search terms included “metadata schema
mapping”, “semantic mapping” and “data integration”

24
. The use of related terms with slightly different ranges

of meaning was useful in giving historical depth on pre-Internet work on database integration and context
beyond the commercial and heritage sectors. This is reflected in the two bibliographic lists at the end of this
report, which include citations from the text but also indications for useful research beyond the immediate
topics.

4.2 BEST PRACTICE REPORT – PUBLIC PRIVATE PARTNERSHIP

The first deliverable of Linked Heritage Work Package 4 had already been substantially completed and
submitted for review when work started on metadata models, technical specification and this report. Most of
the literature reviewed for D4.1 remains relevant for D4.2, and of course D4.1 itself constitutes the basis of the
work done here.

The best practice report in D4.1 describes currently existing partnerships between the cultural heritage sector
and commercial partners, as well as the media industries’ best practice in terms of:

 Standard identifiers;

 Standard descriptive metadata schemas;

 Underlying conceptual models.

To summarise its key findings:

 Extremely rich metadata is available across sectors;
o Marketing collateral means supplemental content is also available;
o Standards are more or less mature, well-documented and interoperable, depending on

sector.

 Conceptual models exist in the commercial and cultural heritage sectors;
o Both of the main models are event-based and therefore basically compatible;
o Semantic mapping across sectors & schemas is possible;
o Some work must be done to overcome the difference in focus (see D4.1, section 4.3. and

5.4.).

 Commercial metadata has unique characteristics:
o It consists not of repositories or catalogues, but of data flows between partners, to enable

trading through the supply chain;
o It must therefore be updated for changes in products, prices, availability, links and marketing

collateral.

 It has an intrinsic legal–commercial aspect:
o It is closely controlled and therefore relies on robust, independently administered identifiers

to ensure provenance;

23 Journal of Information Science (JIS); Journal of Librarianship and Information Science (JOLIS); Health
Informatics Journal; IFLA Journal.
24 “Data exchange” would have been another search term of relevance to this deliverable; however, there is a
significant difference in this context between “integration” and “exchange”, as explained in detail in, e.g.,Stein,
et al. (2005).

 Page 17 of 326

LINKED HERITAGE
Deliverable D4.2

o It is a significant commercial asset and qualifies for database right in the EU;
o It may itself contain extracts or derivations from creative works that are thus covered by

copyright;
o It is often licensed for re-use.

 Therefore to use it in partnerships (such as the real examples in the report, and any future proposal)
we need to develop:

o An attractive and realistic business case;
o A robust data licensing model.

All of these findings – especially those pertaining to conceptual models and commercial sector-specific
requirements – will be referred to throughout this report at the appropriate point in the detailed discussion of
the sector-specific mappings. Conveniently, all of the main insights apply clearly to the ONIX mapping which
forms the central exposition of this report, but their relevance to the other schemas will also be noted where
possible.

4.3 PREVIOUS AND CURRENT EUROPEANA PROJECTS

During the preparation of this report, Work Group 4 kept a watching brief on other projects in the Europeana
network and beyond, both current and past.

Project Domains
addressed

Standards
used

Tools created Insights

ATHENA Museum LIDO MINT Metadata
normalisation and
harvesting
pipeline described
above (section
3.1.)

Europeana
Libraries

Books EDM European Library
Aggregation
Architecture

EDM is not yet
suitable for
aggregating
library data

25

Europeana
Photography

Photo LIDO, IPTC N/A
[still in progress]

N/A
[still in progress]

Europeana
Connect

Music DC (local
application
profile)

DISMARC Need for on-going
institutional
commitment /
investment to
maintain /
develop
aggregators

EUScreen Film and TV (AV) EBU Core
(local
application
profile of DC)

EUScreen portal

European Film
Gateway

AV EN 15907 EFG portal Generated new
cataloguing rules
to cope with lack
of existing
standardisation

25

 See Report on the alignment of library metadata with the European Data Model (EDM) (D5.1), available at
http://www.europeana-libraries.eu/web/guest/outcomes

http://www.europeana-libraries.eu/web/guest/outcomes

 Page 18 of 326

LINKED HERITAGE
Deliverable D4.2

Project Domains
addressed

Standards
used

Tools created Insights

ARROW Plus Books, photo ONIX-RS ARROW
infrastructure

Identifiers and
standard
descriptive format
for images are
desirable

LOD2 Books * LOD2 stack
[many tools]

N/A
[still in progress]

ResearchSpace Museum CIDOC-CRM ResearchSpace
data curation
environment

N/A
[still in progress]

Digitising
Contemporary
Art

Photo, AV LIDO N/A
[still in progress]

LIDO is suitable
for description of
AV and image
resources

HOPE Archive, library,
photo, AV

LIDO N/A
[still in progress]

LIDO is suitable
for description of
image resources

The overall impression so far from these related projects is that interoperability of complex creative media
works requires a rich and flexible harvesting schema like LIDO, although this is not always realised, for example
for music or AV recordings, nor for the complex information objects described by library metadata, which are
not currently adequately described even by the updated Europeana schema.

The technical and semantic bases for creating linked cultural data are being put in place. It should be noted
that although projects like LOD2 are investigating use cases and technical solutions for the commercial sector
to publish linked open data, so far this does not seem to include commercial product or media asset metadata.

Importantly for Linked Heritage, the DCA, Europhoto and Europeana Photography are using LIDO to aggregate
data for media objects very similar those considered here, and in some cases may use some of the same
source data formats (e.g. IPTC/XMP). The presence of many library partners on the Linked Heritage project
indicates that LIDO’s suitability for aggregating book data from the heritage sector will soon be clearly
understood, complementing the work done here on ONIX.

4.4 CROSS-DOMAIN MAPPING: BEST PRACTICE

Just as considerable expertise and best practice has been accumulated in creating and transmitting product
data in the commercial sector, so, partly in direct consequence of this, a body of best practice in
interoperability is also available. As was seen in D4.1, both the commercial sector and cultural heritage world
have similar approaches to the problem, albeit with a different emphasis.

First we should clarify that the type of data integration described here is not federated search or federated
query construction, such as is available e.g. through The European Library for simultaneous search access to
the catalogues of the national libraries of Europe. Rather, it is integration of the contents of databases
themselves; “data integration” proper26. The resulting integrated datasets should then be available for further
reuse, such as aggregation into portals like Europeana.

26

 Sometimes referred to as “data warehousing”.

 Page 19 of 326

LINKED HERITAGE
Deliverable D4.2

4.4.1 The need for mappings: semantic and syntactic interoperability

Datasets from two different domains are “semantically interoperable” when the definitions27 (“semantics”) of
the terms

28
 used to create, select and combine the information they express are the same, or at least

understandable in the same terms (“interoperable”). This process of understanding and using the information
in the data can be more or less automated, but at some point must involve a “meeting of minds”29 as this is
the origin and purpose of all terminology (and indeed all language). The underlying purpose is to communicate
record and use the concepts (and facts) represented by the information; without clear definitions of these
concepts and their relations to the terms used, the data are meaningless and thus useless for communication.

This is the basic requirement for interoperable data; in practical use we can also require “syntactic”
compatibility, the way that terms are combined to create usable information from data. The Dublin Core
Metadata Initiative (DCMI) model of “Interoperability Levels for Dublin Core Metadata”

30
 sets out a useful

analysis of the levels at which this can be achieved using modern tools such as XML (described below) and
RDF

31
 (discussed later in the findings of this report – see section 14.1.3). These frameworks are designed to

assist semantic and syntactic interoperability in the networked computing environment:

“With networked information access to heterogeneous data sources, the problem of terminology
provision and interoperability of controlled vocabulary schemes such as thesauri becomes increasingly
urgent. Solutions are needed to improve the performance of full-text retrieval systems and to guide
the design of controlled terminology schemes for use in structured data, including metadata.”32

The fundamental needs underlying the semantic interoperability efforts of both commercial and cultural
sectors are:

 Identification (of entities: physical objects and immaterial concepts);

 Contextualisation (through attributes and properties: description of objects and relations between
objects);

 Access (to objects and potentially the above information about them for its own value).

These requirements clearly follow a certain chronological order, but the first two, identification and
description, exist primarily to safeguard the third, access and proper use of the objects of interest. It is not
immediately obvious that also concepts, including those used to describe “primary objects of interest” need to
be unambiguously defined and identified, but this is actually fundamental to the whole enterprise, and this
becomes obvious when parts of the process are automated:

“1. Obvious: Assign ID to resource.

 Once assigned, the number must identify the same resource;

 Beyond the lifetime of the resource, or the assigner.

2. Less obvious: Assign Resource to ID.

 The resource must be “identified”;

 Must ensure it is always the same thing (bound);

 Describe the resource “content” [with precision];

27 “Definition makes explicit… the… meaning of a term… A definition is symbolized by a general description, not
by one word. A definition is a perfect general description.” Joseph, M. (2002).
28 “a term is a word, or symbol, conveying a particular meaning… to refer to a reality… [or] to refer to itself as a
term or a concept, that by which we know, not what we know.” Joseph, M. (2002).
29 “When there is ambiguity in the communication of knowledge, all that is common are the words… For the
communication to be successful, therefore, it is necessary for the two parties to use the same words with the
same meanings – in short, to come to terms… Every field of knowledge has its own technical vocabulary.”
Adler, M. (1972).
30 Nilsson, M., Baker, T. and Johnston, P. (2009). Available at
http://dublincore.org/documents/interoperability-levels/
31 See the W3C’s official RDF primer at http://www.w3.org/TR/rdf-primer/
32

 Doerr, M. (2001). Journal of Digital Information, Vol 1, No 8. Available at
http://journals.tdl.org/jodi/article/viewArticle/31/32

http://dublincore.org/documents/interoperability-levels/
http://www.w3.org/TR/rdf-primer/
http://journals.tdl.org/jodi/article/viewArticle/31/32

 Page 20 of 326

LINKED HERITAGE
Deliverable D4.2

 Failure to do this will ultimately break interoperability.33”

The first point is the standard approach to “persistent identifiers” described in many European heritage and
ICT project reports34. The second point is the recognition that (basic) shared terms and definitions for
recognising and describing entities must be kept consistent and constant through time to avoid confusion
when identifiers are used, and eventual loss of the relationship between the identifier and the entity it
denotes (the referent) as language changes35.

Identification of objects and concepts is primarily done directly by humans, at least initially (“even though we
are convinced that the future lies in the coordinated combination of intellectual and statistical methods”, as
per Doerr, 2001). Description and relation of identified concepts can be done semi-automated fashion, but
effective use of schemas (analogous to what DCMI call “Description Set [Profile]” interoperability; see footnote
22) is essential to this enterprise since every “item of metadata is a relationship that someone claims to exist
between two entities”

36
 and the forms these relationships can take must be identified and defined by schemas

of some kind, as described in the next section.

4.4.2 Efficient, structured communication: controlled value lists, schemas and ontologies

It is helpful to more closely characterise the three main types of structured communication relevant to data
mapping before moving on to the tools used in manipulating them. As can be clearly seen in the case of such
structures as data dictionaries37 the distinctions are somewhat fluid, with some data structures having
members with the characteristics of others. Crucially, the kind of terms used distinguishes metadata schemas
from the other two types:

“In considering whether a term is general or empirical, ask whether the term refers to the entire category of
beings (general) or to an individual or individuals within that category (empirical)” (Joseph, 2002).

Applied to existing data models, the categorisation is as follows.

Data structure Terms included Characteristics Prospects for
mapping

Controlled value
lists (“authority
lists”)

General or
empirical

(e.g. general terms
for types of
artwork for
identification;
empirical lists of
artists’ names for
attribution)

Enumeration of terms,
defined either implicitly by
inclusion in the list, or
explicitly in separate
scope notes for each
terms; provide commonly
used data for information
created according to a
schema

Depend very heavily on
the context of the
whole list, level of
definition for individual
terms

Schemas General only

(“slots” for creation
and aggregation of
data about objects
of interest)

Used to define general or
specific values to be
communicated about a
defined class of individual
objects, for a specific use
context

Almost always possible
from a more specific to
a more general
schema; loss of
specificity occurs
unless terms have
identical meanings in
both schemas

33 Paskin, N. (2004). Keynote: The development of persistent identifiers. ERPANET Persistent Identifiers
seminar.
34 Including MINERVA, ATHENA and Linked Heritage.
35 “Recognition” and “interoperability” are discussed in the DOI context at:
http://www.doi.org/doi_handbook/4_Data_Model.html#4.3.1
36 Rust, G. and Bide, M. (2000). The indecs metadata framework. Available at
http://www.doi.org/topics/indecs/indecs_framework_2000.pdf
37

 For example, the indecs data dictionary found at the link in the above footnote, or the DDex data dictionary,
linked from the footnotes of section 4.5.2.

http://www.doi.org/doi_handbook/4_Data_Model.html#4.3.1
http://www.doi.org/topics/indecs/indecs_framework_2000.pdf

 Page 21 of 326

LINKED HERITAGE
Deliverable D4.2

Data structure Terms included Characteristics Prospects for
mapping

Ontologies General or
empirical

(general terms
used to harmonise
schema models;
empirical
references used to
create basic class
definitions)

Highly specific definitions
for all terms; relations
between terms defined at
least by hierarchical
inheritance of class
characteristics; provide
underlying model for
creating schemas and
aligning definitions
between them

As for schemas above;
probably almost always
possible using
“linguistic” ontologies
such as COA (see
section 4.4.6) but not
always practical

It is important to note that relative to other levels of description, each of these data structures can be
considered an “instance” of a more abstract level. Thus data records created according to a schema are often
referred to as “instance data” using the schema, even if what they describe is actually a general category (e.g.
a class of products). A schema designed using a more general ontology can be considered in some sense an
“instance” of the ontology’s model; it is only an “instance” in a relative sense, since it defines a class of
(unique) data records.

All three types of data structures can be modelled using XML, as described below.

4.4.3 Tools for mapping of XML data: schemas and XSLT

Previously, in D4.1, section 5.3.1, we contrasted the commonly-cited definition of metadata as “data about
data” with the more fundamental indecs definition quoted above. In order to specify the problem of “schema
mapping” it is helpful to note some characteristics of the data as it is found in practice, defining it in contrast
to natural language:

 Metadata is highly specific and categorical. Because it acts as a surrogate for another resource or
referent entity (usually an “information object” but certainly also a “heritage object”) it needs to
efficiently convey essential facts. Hence even less strictly modelled and defined data schemas use
language far more concisely and “densely” than natural language. It tends to use categorisations to
aid rapid description and clear identification.

 Metadata is highly structured information. The concept of a schematised method of entering, storing
and retrieving data is used in many other fields, and, as there, in metadata management, its function
is to promote standardisation in all three operations, to reduce the time and effort needed to make
use of the schema and its related data.

Despite these strong contrasts in real practice, in theory “metadata” are still a kind of language, and the
normal rules of language still apply. The study and practice of managing metadata is technical because
grammatical and logical rules are applied strictly, for the above reasons, and to enable machine processing;
they result in unusual and sometimes complex structures and frameworks such as those described here.

The XML (eXtensible Markup Language) standard is used to define the structure and other specifications of
(mainly textual) documents in a wide range of fields38. Its primary characteristics are depicted in the following
extremely simplified diagrams39. The first illustrates the use of XML to encode the structure of a simple text
document. A unified document is broken down into nested or sequential “nodes” delimited by terms in angle-
brackets. The essential features of “well-formed” XML are apparent here: there is one “root node” – in this
case, the <doc /> node – which opens and closes the text serialisation, and all nodes have <opening> and
</closing> instances of their name tags. Thus one could say that XML is a highly generic “structure” that can be
specified for each use to provide “the” structural elements common to a set of similar documents.

38 For an introduction to the formal W3C specification, see http://www.w3.org/standards/xml/core and for a
technical introduction from another viewpoint, see http://www.xml.com/pub/a/98/10/guide0.html
39

 Taken from the UKOLN NOF Technical Advisory Service paper, Metadata Sharing and XML
http://www.ukoln.ac.uk/nof/support/help/papers/metaxml/

http://www.w3.org/standards/xml/core
http://www.xml.com/pub/a/98/10/guide0.html
http://www.ukoln.ac.uk/nof/support/help/papers/metaxml/

 Page 22 of 326

LINKED HERITAGE
Deliverable D4.2

XML markup adding structure and semantics to a simple “document”

The XML markup itself carries only the document’s structure and content. It is clear that some sort of
presentation encoding40 would also be necessary for the document’s appearance to be reconstructed by the
recipient of the XML serialisation. A content standard, defining what may, should and must be contained in a
<doc> would be useful but not obviously essential. In the case of databases, we are dealing with a kind of
information that is already to some degree constrained in its encoding and (more or less explicitly) typed, as in
the second diagram (note the error in the “creator” element, however):

40 Hence the common use of elements or attributes such as those mentioned in 7.2 and 7.3.3, indicating the
intended use or meaning of information to display rather than store; specifics of presentation must be
conveyed by formatting markup, for example HTML (http://www.w3.org/TR/html5/) and CSS
(http://www.w3.org/TR/2011/REC-CSS2-20110607/).

http://www.w3.org/TR/html5/
http://www.w3.org/TR/2011/REC-CSS2-20110607/

 Page 23 of 326

LINKED HERITAGE
Deliverable D4.2

XML markup used to represent already existing structure and semantics of a database record

It is important to note that the XML example above consists only of data elements grouped under the root
element <table> and the containing element <record>. Other containing elements could be introduced to add
further structure and thus meaningful distinctions to data elements, such as <creator>, which could (for
example) be split into <creatorName> and <creatorRole>, with the <creatorName> further separated into
surname, first name, forms of address and so forth. In principle the level of elaboration of this kind, by
elements, is unlimited since elements can always be added within the existing XML structure. In contrast, XML
attributes are not present in the above example. These behave like data elements in that they contain text
values, but not other attributes or elements. Thus they represent the limit of XML’s extensibility and so are
often used for data that applies very generally either to the document structure itself or to the raw data
values. For example, the <date> element above might commonly be given a @dateFormat attribute to specify
the encoding (in the example above the format appears to be YYYY-MM-DD). Note that an attribute might be
used where an enclosed element would work just as well, for example, above the <creator> element might
contain a @sortOrder attribute to distinguish first, second and third authors etc., or equally <creator> might
contain a sub-element <creatorProminence> or simply <sortOrder>. In such cases there is an element of
judgement in the overall document design; however, attributes are most naturally used for the most
generalisable variables or raw data encoding. Note that this is a key distinction between XML formats such as
ONIX for Books, and other serialisations such as the MaRC family of formats; the MaRC fields for book
measurements, page counts, etc. contain text which can include numbers but also letters denoting the units; in
ONIX these are separated so they can be parsed more easily. This is not essential to XML but certainly its
structure lends itself more naturally to the separation and specification of different types of encoding and
semantic content.

Here, the need for an explicit schema to define the types of data, their relations to other parts of the database
and their cardinality41 will be extremely important if not essential to the data recipient trying to reconstruct
the database and potentially merge these data with others. If the schema of any other data to be related to
these differs significantly, a formal definition of the relationship between the schemas needs to be elaborated.
This is the role, at least on a syntactical and algorithmic level, of XSLT

42
, as it specifies how to transform data

41

 See D4.1, section 6.1. for an explanation of “cardinality”.
42

 See the W3C pages on XSLT at http://www.w3.org/standards/xml/transformation

http://www.w3.org/standards/xml/transformation

 Page 24 of 326

LINKED HERITAGE
Deliverable D4.2

conforming to one XML schema into data that conforms to a different XML schema
43

. Software solutions for
implementing XSLT and similar mapping languages will be discussed below in section 4.5., but note here the
essential point that a data element (“node”) in an XML tree can be reference through an XPath expression
which denotes its “path” from the root node. To take the example diagram above, the XPATH reference for
<date> elements can be expressed as “table/record/date”. To specify the <date> of the first <record>
serialised, a function is needed, e.g. “table/record[position()=1]/date” (i.e. note that both table and data are
not repeatable). This is the kind of operation44 on the syntax of XML representations of data that are used in
syntactic mappings. The relationship between syntax and semantics will be further explored below in sections
4.4.4. and 4.4.5.

Although relations between the elements’ meanings (terms) can be defined through the logical structures of
XML (and perhaps RDF), at some point, the values of the elements’ content must be defined in a natural
language comprehensible to its creator and user. This level of definition is not currently automated and there
must be at this point a “meeting of minds” at the level of human interaction. As Godby (2012) recently noted
after completing the updated mapping of ONIX for Books to MaRC21: “the barriers to progress [in
interoperability] are cultural or political, not technical”. Hence we will look to a combination of technical and
collaborative mapping solutions, outlined in the next three sections.

4.4.4 Complementary approaches for schema mappings

Godby, Smith, and Childress (2003) outlined two familiar approaches to semantic mappings of metadata
schemas originating in different domains:

 the short translation path – a pre-defined transformation is applied to the schema, automatically
mapping each source element to a target element;

 the long translation path – each source schema is mapped by hand to a core ontology, which then
maps to the target schema.

The first approach is the so-called “crosswalk”, of which many examples already exist. Although not necessarily
the case, crosswalks have tended to be associated with relatively ad-hoc harmonisations between schemas,
not necessarily authoritative, and different versions may give quite different results. The longer route,
sometimes called “hub-and-spoke”, depends on a robust core (or “mediation”) ontology capable of expressing
terms in potentially very different knowledge domains. Each of these has its advantages and problems:

Mapping
approach

Pro Con

Short Potentially quick checking of
correspondence by human experts
on either side where terms and
syntax are relatively simple to
understand and well-documented

Can tend towards ad hoc mappings where
correspondence is at best partial or
ambiguous; mapping decisions not always
well documented; no suggestions for new,
common terms to accommodate areas not
yet shared by both formats

Long Only one mapping per input schema
is required so long-term efficiency
results; detailed analysis can pinpoint
existence and also degree of
correspondence between terms

Detailed ontological analysis far more time-
consuming; can suggest improvements
and additions to either or both formats

The two approaches to schema mapping outlined above form a spectrum that covers most activity in this area.
They are not antithetical, as a direct crosswalk could indeed be generated from a hub-and-spoke mapping
analysis.

43 XSLT is certainly not the only language that can be used for this purpose – for example, the related Xquery is
also used, and OCLC (Godby, Smith, and Childress, 2003) even developed a proprietary language achieving the
same results – but XSLT is the language implemented so far by Linked Heritage.
44

 For more on XSLT and XPATH functions, various reference documents are available, for example from
MicroSoft http://msdn.microsoft.com/en-us/library/ms256069.aspx

http://msdn.microsoft.com/en-us/library/ms256069.aspx

 Page 25 of 326

LINKED HERITAGE
Deliverable D4.2

A third approach, that of statistically inferring mappings (see Doerr, 2001) from actual data produced using
each schema, for example by frequency of data values and their co-occurrence, would certainly be interesting,
and potentially useful to both types of approach outlined above; but it falls outside the expertise of the Work
Group and would probably be beyond the resources of the Linked Heritage project (and of Europeana).

In order to mitigate the difficulties experienced in creating automated or user-defined mappings, the focus of
most practical work turned to improving the semantic detail in the core ontology

45
. This has two aspects, the

event-based data modelling approach found in both the content industries and the cultural heritage sector
(see Linked Heritage, D4.1; section 5.4), and the architecture of the ontology itself. These will be briefly
outlined in the next two subsections.

4.4.5 Conceptual Models (CIDOC-CRM, FRBR(oo) & Indecs)

As noted in D4.1, the two main communities of practice in question here have produced core ontologies based
on their domain knowledge and practice. These share the two main characteristics necessary to their function:
a distinction between conceptual and perceived objects of interest, and an analysis based on the “event” (or
“context” – the terms are used interchangeably at least in the commercial data world). The FRBRoo model is of
particular interest here as it anticipates the work of Linked Heritage by incorporating the commercial world’s
object of interest (for the book sector) into the heritage world’s focus for description (contextualisation):

Model Object of primary interest Contextualisation

Indecs Commercial products Product life cycle

CIDOC-CRM Cultural heritage objects Object’s “life history”

FRBRoo Books (generally commercial products but in
theory some could be unique heritage objects)

Product lifecycle as if it
were a “life history”

The difference in focus of description is best seen in the terms used to describe the event types used to
generate other classes and properties. Some examples taken from the immediate sub-classes of the “event”
class in each model are shown below (note that terms like “expression” are defined differently in indecs and
CIDOC-CRM/FRBRoo):

45

 At roughly the same time, the 1990s, in the heritage, library and copyright content sectors. See D4.1 and
http://www.doi.org/topics/RustModelofMaking2005.pdf for a discussion of their similarities.

http://www.doi.org/topics/RustModelofMaking2005.pdf

 Page 26 of 326

LINKED HERITAGE
Deliverable D4.2

CIDOC-CRM
46

(life history events)

Indecs
47

(product lifecycle
events)

FRBRoo
48

(product lifecycle events as life history)

Activity

- Modification

- - Production

- - Part Addition

- - Part Removal

- Attribute Assignment

- Creation

Beginning of Existence

- Birth

- Transformation

- Production

- Creation

End of Existence

- Destruction

- Death

assertion

creatingEvent

disseminatingEvent

expression

transaction

transformingEvent

usingEvent

Activity

- Performance

- Creation

- - Work Conception

- - Expression Creation

- - - Recording Event

- - - Publication Event

Beginning of Existence

- Production

- - Expression Creation

- - Carrier Production Event

- - Reproduction Event

[further as in CIDOC-CRM]

Here it can be seen that through the FRBRoo analysis of authorship and publication of books, the event types
associated with mainly conceptual creations (intellectual property) typical of indecs have started to find a
home within the more general historical apparatus of CIDOC-CRM. It must be noted, though, that the FRBRoo
framework is based in some key areas on CIDOC’s draft “MetaCRM”49 which allows (among other things)
detailed descriptions of class properties. Neither FRBRoo nor MetaCRM are yet officially incorporated into
CIDOC-CRM, or yet implemented in LIDO. Therefore at this stage FRBRoo can only be used to inform the
mapping work, but not fully relied on for future interoperability.

The indecs ontology informs ONIX for Books and DDex. This can be seen very clearly in the fact that distinct
messages from the ONIX family of standards describe two of the main entities in the indecs model50:

 indecs:abstraction – ONIX for ISTC (registration message for abstract texts);

 indecs:manifestation – ONIX for Books (and ONIX for ISBN, a subset thereof).

The ISTC manual also makes clear that the abstractions identified by the ISTC are defined in terms of events
(origination or derivation) with identifiable actors involved. These definitions and distinctions are in harmony
with the indecs “model of making” and more general event basis.

Another more subtle example is seen in the enhancements to the ONIX for Books standard, from version 2.1 to
the current version, 3.0. For many concrete examples, see Godby (2012), on which the illustration below is
based. In the most recent ONIX schema, the semantics of many elements that previously had extremely
specific term definitions are incorporated into composites that spell out the same information step-by-step,
for example, some of the various subject classification elements:

46 Taken from Crofts, N. et al. (2011). Definition of the CIDOC Conceptual Reference Model. Available at
http://www.cidoc-crm.org/docs/cidoc_crm_version_5.0.4.doc
47 Taken from Rust, G. and Bide, M. (2000). [and see footnote 26].
48 Taken from Bekiari, C., Doerr, M. and Le Bœuf, P. (2010). FRBR object-oriented definition and mapping to
FRBRer (Version 1.0.2) Available at http://www.cidoc-crm.org/docs/frbr_oo/frbr_docs/FRBRoo_V1.0.2.pdf
49 For discussion of CIDOC MetaCRM and other related drafts, see http://www.cidoc-
crm.org/working_editions_cidoc.html
50

 See the discussion of the indecs data model in D4.1 section 5.4.3.

http://www.cidoc-crm.org/docs/cidoc_crm_version_5.0.4.doc
http://www.cidoc-crm.org/docs/frbr_oo/frbr_docs/FRBRoo_V1.0.2.pdf
http://www.cidoc-crm.org/working_editions_cidoc.html
http://www.cidoc-crm.org/working_editions_cidoc.html

 Page 27 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX
version

XML encoding Natural language meaning(s)

2.0 <BICMainSubject>GM</BICMainSubject> “The main subject code for this book, in
the BIC subject classification scheme, is
GM”

3.0 <Subject> “A subject of this book…

<MainSubject/> …specifically, the main one…

<SubjectSchemeIdentifier>12</SubjectSchemeIdentifier> …as encoded in BIC subject
classification…

<SubjectCode>GM</SubjectCode> …is GM

</Subject> ”

In the ONIX version 3.0 example, the BIC subject scheme is identified by the code “12” from a code list
stipulated by the ONIX specification. Such flexibility was partly available in ONIX 2.1 but there were dedicated
XML elements for subject codes taken from particular schemes (BIC, BISAC), and for ‘main’ subject codes. In
analysing down the element terms more finely, the ONIX 3.0 schema actually reduced the total number of
terms needed.

The approach whereby each type of data is made as general as possible is representative of the overall ONIX
design, which also allows “proprietary” as a type for many data items, notably identifiers. This contrasts with
the approach of LIDO, which strongly favours published identifiers (see section 8.2), whereas ONIX follows the
indecs principle of retaining provenance information as essential data.

Note finally that because of the added generality and reuse potential of the data and structural elements, still
further implicit relationships could potentially be analysed out of the ONIX 3.0 element terms in a new version
of the schema;, for example, to answer the question, according to whom is the subject GM the “main” subject
of the book? Classifications assigned by various different agencies, perhaps the publisher, booksellers, and
libraries, might each consider the main topic to be something (probably only slightly!) different; thus an extra
element within the <Subject> composite, perhaps designated <SubjectAssignmentAgency> and needing
various sub-elements to unambiguously identify the agency, might be added (if the need for this detail were
proposed by libraries and historians of publishing, perhaps).

However, in defining the XML schema and its underlying semantics, EDItEUR has in effect codified which types
of relationships the ONIX standard’s users will need. Any other standard schema, including LIDO, will draw the
boundaries elsewhere, and thus some relationships may not be expressible in both (almost a certainty unless
the target schema’s terms are so general as to be practically unusable).

Any mapping thus needs to take into account not only the semantic definitions and syntax expressing them in
the source and target formats, but as developed in the discussion above, the best practice and other contexts
of the use case for the formats involved, and the mapping itself. This leads us to consider the final, most
abstract ramification of schema mappings in the next section.

4.4.6 Contextual ontologies and the Vocabulary Mapping Framework (VMF)

The work of the indecs project in 2000 was followed up by a more generalised metadata modelling framework
project (CONTECS, in 200151). This in some senses applied the methodologies of indecs to the process of
assigning metadata itself and resulted in a highly generalised schema (OntologyX, now managed by
RightsCom

52
) that can be used to perform the kind of analysis of relationships and meanings described above

at the lowest possible level of logical granularity. The analysis is based on an event structure similar to CIDOC-
CRM, with the central key concept of the “context” defined by the kind of activity or change taking place, thus
defining the semantics of “verbs” such as “create”, “publish”, “produce”, or “acquire”.

51

 See Paskin, N. (2004).
52

 See the RightsCom homepage for OntologyX at http://www.rightscom.com/Default.aspx?tabid=1067

http://www.rightscom.com/Default.aspx?tabid=1067

 Page 28 of 326

LINKED HERITAGE
Deliverable D4.2

In the diagram below it is presented as the “richest, most indirect” view of a given set of metadata, of the
three possible levels common to schemas (attribute level), graph representations like RDF (relationship) and
contextual ontologies. The contextual, or event analysis can be used to model any type of data in a maximally
generalised and interoperable way.

Figure 1 – “Ontology approach: deeper view of metadata” from Paskin, N. (2004)

In this way the OntologyX schema (the “Contextual Ontology Architecture”, or COA schema), however, limits
itself to expressing the linguistic and logical meaning of data in the context determined by its input terms,
leaving ontological definitions in the knowledge domain of interest to the relevant experts. Therefore it can be
used to represent not just the data but the schemas and ontologies themselves for purposes of integrating
their data and creating new messages across knowledge domains where needed, if these do not yet exist.

This work was of great value to the commercial content sector because of the necessity to create precise,
reliable machine-processable expressions of rights and use policies for intellectual property content (for
example, through the MPEG Rights Data Dictionary53), but the same “toolkit” of conceptual (really linguistic
and logical) analyses and data management structures was also seen to have potential value for library and
other heritage sectors. The JISC-funded VMF project in the UK (running June-November, 2009; homepage:
http://www.doi.org/VMF/) applied the OntologyX schema to parts of schemas and at least one existing
authoritative mapping54 of a small set of terms with a narrow range of meanings, primarily about the format
and medium of creative media manifestations, across commercial and heritage sector schemas and
vocabularies. The schemas included were:

 CIDOC-CRM

 DCMI

 DDex

 FRAD

 FRBR

 IDF

 LOM (IEEE)

 MaRC21

 MPEG21 RDD

 ONIX for Books

 RDA

 RDA/ONIX Framework

53 See the RightsCom page on “Rights Data Dictionary (RDD)” at
http://www.rightscom.com/Default.aspx?tabid=1172
54

 Such as the entire RDA/ONIX framework, found at http://www.rda-jsc.org/docs/5chair10.pdf

http://www.doi.org/VMF/
http://www.rightscom.com/Default.aspx?tabid=1172
http://www.rda-jsc.org/docs/5chair10.pdf

 Page 29 of 326

LINKED HERITAGE
Deliverable D4.2

It is clear that if LIDO, and the relatively self-contained and well documented schemas for IPTC Core and
Extension, and the EIDR referent metadata, were included, and the remainder of the ONIX for Books and DDex
schema elements mapped, an incredibly rich mapping resource would result, covering the whole scope of
Linked Heritage D4.2 from the semantic perspective, and opening the door to producing a new,
comprehensive harvesting schema for any commercial product information or cultural heritage object.
However, this would involve very significant work and expense (see section 4.5.3) that is certainly beyond the
scope of the current project and may exceed the value of the benefits.

A formal concept analysis55 of each term produced “atomic” categories such as those below taken from the
RDA/ONIX Framework.

Figure 2 - "Examples of base content categories" from AACR JSC. (2006).

For example, to say a resource consists of “text” would mean it is made up of “language” (only) for
interpretation by “sight” (only), without any aspect of “dimensionality” (2D or 3D) or “movement” (still or
moving). The COA analysis was then applied to assign verbs defining the “context” e.g. of creating, adapting or
translating a “text” so defined, and the resultant “resources” and “agents” assigned places within the VMF
ontology as in the example below:

Figure 3 - "Structure of the VMF matrix" from Rust, G. (2009).

In the above figure, one can see terms from the input schemas (ONIX and DDex) in blue and green, mapped
exactly to VFM terms, in the larger VFM hierarchy. The bold lines indicate “best fit” mappings between input

55

 See Sowa, J. F. (2007). Conceptual Structures: Mathematical Background. Available at
http://www.jfsowa.com/logic/math.htm#FCA

http://www.jfsowa.com/logic/math.htm#FCA

 Page 30 of 326

LINKED HERITAGE
Deliverable D4.2

schemas via the VMF ontology. Such programmatically generated schema mappings were among the proposed
use cases for VMF, which included:

 Searching/querying across multiple data formats;

 Taxonomy/subject index mapping;

 Mapping of local, bespoke metadata schemas;

 Preservation metadata;

 Full message transformation (metadata crosswalk)56.

Obviously the two use cases in italics above have great relevance to Linked Heritage. Mapping taxonomies and
subject terms falls under the remit of Work Package 3, and full message transformation (crosswalk) is the task
of the content coordination or specification partners in WGs 4 and 6. Crosswalks produced using the VMF
would have the additional advantage of being “short path” translations based on “long path” analysis (see
section 4.4.4).

Notwithstanding its unfamiliar and often very abstract terminology, the VMF “language” could also be used to
construct new, self-contained sets of elements for multimedia aggregation and discovery environments, in
much the way that the Dublin Core elements were originally conceived. For the core element set, the most
concrete shared terms whose definitions include by subsumption (i.e. “sameAs” or closest “superClassOf”) all
the mandatory elements of each schema would be used, perhaps with the addition of the “recommended”
elements of each scheme as identified by their communities’ best practice guidelines. The difference between
this approach and ab initio selection of “universal” core elements is that the semantic links to source schemas
would have already been articulated in detail, so there would be no need to create qualified terms, application
profiles and local practices to make up for the deficiencies and ambiguities of the basic elements.

4.4.7 LIDO as an instance-level CIDOC-CRM implementation

At this point LIDO can be mentioned as an aggregation schema that does already implement some of the
features of such an ontology-based core element set. Its terms are extremely general because they rely on the
classes and relations of CIDOC-CRM; they are also deliberately selected for closeness to a range of instance-
level domain schemas taken from across heritage collection management practice; the LIDO schema itself has
some of the other distinctive features of the VMF matrix, in that alongside its role in harmonising its input data
with the CIDOC-CRM, it also captures some relations to the input schema, through the @encodinganalogue
attribute available for many elements. This ensures that the link to the original definition of the data is
preserved even though LIDO’s categories are usually more general. However, because it is currently conceived
as mapped to a specific portion of CIDOC-CRM (for physical objects) its overall semantic range is limited. As
will be explained below (section 5.1, with more details in Appendix 2) a more flexible mapping to allow
corresponding LIDO properties to be expressed for conceptual objects (specifically classes such as product
types) would bring LIDO into line with the FRBRoo extension and closer to the indecs/COA approach.

4.5 EXISTING MAPPING, AGGREGATION AND DISCOVERY SERVICES

This final stage of the literature review briefly highlights some of the project- or service-scale implementations
of the above best practice, in the heritage and commercial sectors.

4.5.1 MINT

Linked Heritage subscribes to the MINT aggregation and mapping software platform hosted by NTUA57. For
each project using MINT, an aggregation schema (for Linked Heritage, of course, this is LIDO) and a publication

56 Compiled from the VMF home site at http://www.doi.org/VMF/archive.html and final report at
http://www.jisc.ac.uk/media/documents/projects/vmf_final_report.pdf
57 For an introductory overview of MINT see
http://mint.image.ece.ntua.gr/redmine/projects/mint/wiki/Introduction and for technical details in relation to
Linked Heritage see http://www.athenaeurope.org/index.php?en/149/athena-deliverables-and-documents
(deliverables D7.1 and D7.4), and http://www.linkedheritage.org/index.php?en/142/documents-and-
deliverables (deliverables D5.1 and D5.3).

http://www.doi.org/VMF/archive.html
http://www.jisc.ac.uk/media/documents/projects/vmf_final_report.pdf
http://mint.image.ece.ntua.gr/redmine/projects/mint/wiki/Introduction
http://www.athenaeurope.org/index.php?en/149/athena-deliverables-and-documents
http://www.linkedheritage.org/index.php?en/142/documents-and-deliverables
http://www.linkedheritage.org/index.php?en/142/documents-and-deliverables

 Page 31 of 326

LINKED HERITAGE
Deliverable D4.2

schema (here, ESE) is specified
58

. Data can only be uploaded; MINT is not able to update metadata publications
record-by-record, so in the case of Linked Heritage contributions to Europeana would have to be updated

59
 in

negotiation with Europeana’s aggregation team. MINT ingests (among other formats) XML instances,
empirically generates an input schema based on the XML instances input, and allows the user to map this
schema to LIDO, generating an XSLT script for the transformation. Hence the experiments described in this
report used XML instance data contributed by the relevant standards organisations, experts in the domain
(IPTC) or licensed implementers of the standards (DDex). MINT currently uses a single, standardised mapping
of LIDO to ESE60.

4.5.2 Linked Heritage Terminology Management Platform (TMP)

Controlled value lists for enrichment of the Linked Heritage aggregation data will be managed with a bespoke
TMP developed in part from xTree61. The format for aggregating terminologies is SKOS62, a data modelling
language for representing existing controlled vocabularies. Its structure has similarities with languages for
expressing formal ontologies, but is meant primarily for lightweight representation and retrieval, rather than
extensive modelling of complex relationships

63
 (for example, it does not define any relationships between

concepts beyond hierarchical links and generic “relations”). The vocabularies to be expressed in SKOS, in as far
as they are hierarchical and consist of a concept code (SKOS:notation), label and scope note (or definition),
have much in common with the controlled value lists used in commercial metadata, for example:

Commercial metadata standard Terminologies (mostly excluding schema elements)

ONIX for Books ONIX code lists
64

DDex DDex data dictionary
65

 (parts)

EIDR EIDR schema(s) enumerated values
66

IPTC / XMP IPTC newscodes
67

Further, at least one of the standards, ONIX for Books, contains elements that can hold values from other
vocabularies (especially subject codes) widely used in the commercial and heritage sectors, and of course it
can contain values from proprietary vocabularies too.

As the LH TMP is currently still in development, and MINT, as discussed below, is not yet integrated with it or
ready to accept other SKOS imports, only important points of contact with controlled vocabularies will be dealt
with in this report.

58 Hence MINT can be used in the Linked Content Coalition successor project, RDI, to map a wide range of
rights and licence expressions to a common model. See:
http://www.linkedcontentcoalition.org/uploads/1206120_plenary.pdf
59

 See D4.1, sections 5.3 and 9.1 for the need for updates and provenance of metadata, as well as the findings
and conclusions of this report.
60 See Stein, R. LIDO v1.0 to ESE v3.4 mapping table. Available at
http://www.linkedheritage.org/index.php?en/177/training-material-targeted-to-linked-heritage-content-
providers#6
61 See the W3C page for xTree at http://www.w3.org/2001/sw/wiki/XTree and ATHENA documentation at
www.athenaeurope.org/getFile.php?id=583
62 The official SKOS primer is available at http://www.w3.org/TR/skos-primer/ and Linked Heritage’s guide for
SKOS implementation can be downloaded at http://www.linkedheritage.org/getFile.php?id=244 (and see also
Wyns, R. and Leroi, M. (2012). D3.1 Best practice report – Terminology. Available at
http://www.linkedheritage.org/getFile.php?id=286)
63 See the comparison of SKOS, RDF and OWL at: http://www.w3.org/TR/2009/REC-skos-reference-
20090818/#L1045

64 http://www.editeur.org/ONIX/book/codelists/current.html
65 http://ddex.net/dd/dd_ERN35_DSR41_MWL21/
66

 http://www.eidr.org/schema/1.0/
67

 http://iptc.cms.apa.at/site/NewsCodes/View_NewsCodes/

http://www.linkedcontentcoalition.org/uploads/1206120_plenary.pdf
http://www.linkedheritage.org/index.php?en/177/training-material-targeted-to-linked-heritage-content-providers#6
http://www.linkedheritage.org/index.php?en/177/training-material-targeted-to-linked-heritage-content-providers#6
http://www.w3.org/2001/sw/wiki/XTree
http://www.athenaeurope.org/getFile.php?id=583
http://www.w3.org/TR/skos-primer/
http://www.linkedheritage.org/getFile.php?id=244
http://www.linkedheritage.org/getFile.php?id=286
http://www.w3.org/TR/2009/REC-skos-reference-20090818/#L1045
http://www.w3.org/TR/2009/REC-skos-reference-20090818/#L1045
http://www.editeur.org/ONIX/book/codelists/current.html
http://ddex.net/dd/dd_ERN35_DSR41_MWL21/
http://www.eidr.org/schema/1.0/
http://iptc.cms.apa.at/site/NewsCodes/View_NewsCodes/

 Page 32 of 326

LINKED HERITAGE
Deliverable D4.2

4.5.3 OntologyX

The OntologyX architecture and VMF are still available for use but would require significant extra project time
and possibly subcontracting

68
 and so falls outside the practical scope of LH WP4. It would be highly desirable to

build on this work in possible future projects or longer-term work, so possible ways forward will be discussed
in sections 14 and 15. Methodologies for Producing Experimental Mappings

This comparison of methods draws on the literature reviewed above, and makes the link between solution of
the problem in theory and the experimental work done for T4.4.

4.6 MAPPING PRODUCT CLASS DATA TO AN INSTANCE SCHEMA

The conceptual background to the mappings presented here has this basic problem at its heart: LIDO is a
schema for unique, single items curated by heritage institutions; the source schemas for these mappings are
abstract classes of commercial products (and in the case of EIDR, can be even more abstract classes of product
classes). A product class is defined by the publisher or other “releasing” company but has no “repository” as
such, and also lacks other key attributes which only items can possess.

A fuller discussion of solutions to this problem is found in Appendix 2. Here we will simply note some factors
that tell in favour of adopting the simplest solution, that of mapping each class property to the relevant item
property where available, and signalling this in the data record itself:

 The fundamental conceptual modelling work to enable this solution has already been done69, and the
benefits to the heritage and library sectors are well established. This approach will extend the existing
scope to include e.g. audiovisual archives, music recording archives and photography libraries:

“Mediation tools and Semantic Web activities require an integrated, shared ontology for the information
accumulated by both libraries and museums for all the collections that they hold, seen as a continuum from
highly standardised products such as books, CDs, DVDs, etc., to raw materials such as plants or stones, through
“in-between” objects such as draft manuscripts or engraving plates. In addition, such typical “library objects”
as books can be about museum objects, and museum objects can represent events or characters found in
books (e.g., ‘Ophelia’s death’) and descriptions of museum objects in museum databases may contain
references to bibliographic resources that mention those museum objects: such interrelationships should be…
integrated in common information storage…”70

See also some initial proposals for modelling specifically commercial products such as art prints, replicas, CDs
of archival sound, and of course books and DVDs, in Appendix 3 of this report, kindly contributed by Patrick le
Boeuf, one of the primary authors of FRBRoo.

 Modelling of “types” as in FRBRoo is inherently useful for heritage work and could have unanticipated
benefits by modelling, for example, conceptual classes within the content of intellectual objects
(subject terms but also conceptual constructs like narratives, references, philosophical formulations):

“…types play a central role in the history of human understanding; they are intellectual products, and
documentation about the history and justification by physical evidence of types… falls squarely within the
intended scope of the CRM…”71

 The existing use of LIDO points towards extension to cover commercial publications and releases of all
kinds; the main features and characteristics of these product classes are shared entirely with
collections of ephemera, archives of broadcast and cinema media, sound archives, Web archiving
initiatives, museums of publishing, technology, contemporary digital art, etc. In any case, LIDO can
and is being used in libraries as part of Linked Heritage.

68 See for example the standardised costs of mapping new terms to the VMF:
http://www.doi.org/VMF/registering.html
69 That is, in FRBRoo and meta-CRM: http://www.cidoc-crm.org/frbr_inro.html and http://www.cidoc-
crm.org/working_editions_cidoc.html
70

 FRBRoo version 1.0.2, available at: http://www.cidoc-crm.org/frbr_drafts.html
71

 CIDOC meta-CRM draft, available at: http://www.cidoc-crm.org/working_editions_cidoc.html

http://www.doi.org/VMF/registering.html
http://www.cidoc-crm.org/frbr_inro.html
http://www.cidoc-crm.org/working_editions_cidoc.html
http://www.cidoc-crm.org/working_editions_cidoc.html
http://www.cidoc-crm.org/frbr_drafts.html
http://www.cidoc-crm.org/working_editions_cidoc.html

 Page 33 of 326

LINKED HERITAGE
Deliverable D4.2

Having identified the main forward step inherent in this cross-domain mapping, possible practical
methodologies are now described, beginning as before with the most general and moving towards the most
practical and concrete. It should be noted that each of these approaches involves doing the same substantial
work: modelling data and use cases; analysing, identifying and matching semantic content of terms; selecting
best fits across the schemes. The difference is only in the methodology, the conceptual frameworks and
procedures, and technical tools used; all are valid approaches but each has pros and cons. This report appears
timely as at the time of writing, a draft International Standard is under review, which synthesises general
recommendations for creating schema mappings72. In all cases, the work will be time-consuming, requires
skilled practitioners with significant domain knowledge, and is justified only where there is reasonable
expectation of large-scale mapping of data from one domain to another. In the comparison tables below,
decisive factors, either pro or con, have been highlighted to make it clear how the current approach was
selected.

4.7 MAPPING BASED ON AN UPPER ONTOLOGY

In this approach, represented in the extreme case by the VMF (section 4.4.4. above), a top ontology is created
from very granular analyses of each term’s natural language meaning (its “primitive semantics”). The relations
between these new, analytical terms are extrapolated using a pre-defined analysis of the complete set of
possible entities and relationships (a fundamental data model), until they provide links between all terms that
must be mapped.

Aspects Pro Con Solutions

Semantics Extremely rigorous May be too abstract
to produce actionable
results

Refer to data sample(s)

Compare with other
ontologies, especially in
the relevant domain

Produce new schemas
based on shared
semantics and use
case

Completeness Can easily include all
elements as desired

Possibility of wasting
time mapping all
possible terms?

Work to specific use
case for each mapping

Practicality Produces authoritative
and reusable mappings

Initial analysis can
be time-consuming
and resource
intensive

Maybe difficult to
document results

Overall complexity of
process, high skill
requirements,
requirement for
extremely broad
domain knowledge

Automation of some
processes

Outsourcing of some
processes

Reuse of primitive
semantics and terms
from other ontologies

4.8 DIRECT MAPPING OF ELEMENTS

In this approach, very common in “crosswalks” between diverse fields, the schemas for the source and target
data are compared, using the standard definitions and examples given in the schema specifications. Any fields
that share sufficient meaning to satisfy the mapping’s use case are considered to map (at least in one
direction) and suggestions may be made to extend the target field to include new semantics if needed.

72

 ISO/DIS 25964-2, Information and documentation — Thesauri and interoperability with other vocabularies
— Part 2: Interoperability with other vocabularies

 Page 34 of 326

LINKED HERITAGE
Deliverable D4.2

Aspects Pro Con Solutions

Semantics Based directly on
standards without
potentially misleading
examples

Could clarify
(mis)matches within
use case(s)

May be abstract Refer to data sample(s)

Completeness Can easily include all
elements as desired

Possibility of wasting
time mapping all
possible terms?

Work to specific use
case for each mapping

Practicality Uses a minimum of
data and tools

May be difficult to
document results

May be time-
consuming for large
schemas

Requires significant
knowledge of two or
more domains and of
two or more schemas

Use standard templates
where available

Collaborate with source
and target schema
authorities

4.9 MAPPING EXEMPLARY INSTANCES WITHIN AGGREGATOR

Tools like the ATHENA / Linked Heritage MINT aggregator incorporate schema mapping into the aggregation
workflow. Individual elements are mapped “manually” to the target schema (in MINT, this is LIDO) from a
sample of XML data. This sample may be drawn from real life use, or created as an illustrative “dummy record”
or be a mixture of both.

Aspects Pro Con Solutions

Semantics Maybe clearer from
context of example data

Danger of using
idiosyncratic records
in sample

Relative simplicity
may be misleading

Aggregator schema
may be fixed

Use schema
specification to clear up
ambiguities

Check against other
samples

Completeness Should include most
common or typically
used elements

May not include all
elements needed for
larger datasets

Examine real datasets

Create dummy records
/ messages including
elements not in sample
data

Practicality Use existing tools to
automate some
processes

Time and effort to
learn tools

Requires significant
knowledge of two or
more domains and of
two or more schemas

Use standard mappings
where available

Collaborate with source
and target schema
authorities

A further difficulty of the exemplary instance approach is that all the schemas considered here, apart from
IPTC/XMP, can appear in a variety of configurations depending on the type of entities described; for example,
ONIX may describe single volume book products, or composite products made up of multiple volumes, or

 Page 35 of 326

LINKED HERITAGE
Deliverable D4.2

books plus CDs; DDEX may describe a release made available as products in diverse media such as CDs and
digital downloads; and EIDR assets can be of a large number of types, classified at several levels of abstraction.
Thus, there may be no one complete mapping of a whole schema.

4.10 APPROACHES CHOSEN FOR THIS REPORT

Based on these considerations, the mapping methodology used in practice for this deliverable comprised the
following steps incorporating aspects of all three approaches:

1. Generate sample data using all mandatory and commonly used elements of
a. Source schema;
b. Target schema.

2. Upload sample source data to MINT.
3. For each section of target schema in MINT

a. Analyse semantics of target schema elements;
b. Compare semantics of source elements keeping in mind

i. Analysis method used in top ontology approach;
ii. Specification of source schema and best practice notes;

iii. Specification of target schema and best practice notes.
c. Select appropriate source elements and map.
d. Add source conditions based on specifications and best practice.
e. Update sample data with elements not present in order to create mappings for all relevant

elements of the source schema, and repeat the above steps 2 to 3.e.
f. Document mappings:

i. Successful elements;
ii. Elements and rules not yet possible in LIDO and/or MINT. Outline possible

enhancements to schema and mapping tool that would enable expression of source
semantics.

g. Submit XSLT and source / output data to experts in source and target semantics for initial
review.

h. Test completed mappings with a variety of test data.
4. Document final mappings.

So far this methodology has only been used in full for the ONIX for Books 3.0.1 schema. For the other three
areas work has been started and will be published when complete. Findings from each sector’s experimental
mapping have been included here as indications of progress and the main problems to solve.

 Page 36 of 326

LINKED HERITAGE
Deliverable D4.2

5 MAPPING COMPLEXITY FOR THIS PROJECT

The final question to answer before completing the practical work of T4.4 was to decide the appropriate level
of detail for Linked Heritage mappings. Although at first glance it might appear reasonable to map all four
sectors’ schemas to LIDO, ESE and EDM, in practice this is a central problem for Linked Heritage and Europeana
itself. As in D4.1, the decisions made in this methodological section represent part of the findings and are
reflected in the recommendations and work plan towards D4.3.

5.1 MINIMAL MAPPING – DIRECT TO ESE

An initial hypothesis was to begin the mapping exercise from the broad context of Linked Heritage as a
Europeana contributor and produce a mapping directly into ESE73. This would have the advantage of creating a
potentially small and simple mapping (corresponding to the lightweight ESE schema) and allowing contributors
from the commercial sector to submit data to Europeana without entering into partnership with Linked
Heritage should they so wish.

Minimal mapping – industry sector schema to ESE

Experimental mappings of ONIX 3.0 and IPTC to ESE soon made apparent the impracticability of this approach,
for general and sector-specific reasons, albeit with positive lessons learned, as summarised below:

Schema Difficulties Lessons learned

All (general
aspects of
ESE)

Both the small number of elements and the lack
of appropriate semantic equivalents for many
core properties of commercial data make a
technically useful mapping impossible.

Any direct mapping would
really be a selection of
elements based on the
individual use-case of specific
providers, primarily chosen for
display to customers.

73 This has recently been done for previous extremely small-scale pilots of publisher data integration into
Europeana. See for example:
http://www.europeana.eu/portal/search.html?query=penguin&qf=PROVIDER:Penguin (13 books) or
http://www.europeana.eu/portal/search.html?query=libreka (36 books)

Industry
sector

schema

• ONIX

• DDEX

• EIDR

• IPTC

ESE
• DC and DC

Terms

• ORE
aggregation

http://www.europeana.eu/portal/search.html?query=penguin&qf=PROVIDER:Penguin
http://www.europeana.eu/portal/search.html?query=libreka

 Page 37 of 326

LINKED HERITAGE
Deliverable D4.2

Schema Difficulties Lessons learned

ONIX 3.0 and
2.1

The ONIX for Books schemas are so large, and
offer so many options and combinations of
elements, that any mapping to ESE will be
extremely complex, without doing justice to the
full semantics (especially for version 3.0.1).

A useful specification for the
mapping to ESE must be
based on an initial LIDO
aggregation. The aggregator
platform must be developed to
allow either direct editing of
the LIDO-ESE mapping (to
produce data-provider-specific
mappings), or to allow
automated selection between
a large number of optional
elements based on complex
business rules (beyond the
ONIX schema).

IPTC The IPTC properties, as expressed in XMP, at
first glance share with ESE the five Dublin Core
properties Creator, Description, Rights, Subject
and Title. However, the IPTC specification
restricts the use of all these properties, often
explicitly in disjunction with other IPTC
properties (i.e. IPTC implements a specialised
‘profile’ of DC), which therefore cannot be
mapped to the ESE schema without considering
the specialised semantic value of the data.
Where a photograph depicts another artwork, for
example, there is no way to make this distinction
in ESE to respect all the rightsholders and
provide usable information.

Though a very small number
of IPTC properties could
potentially be mapped to ESE
with agreement from IPTC as
a “standard” mapping. The
effort involved would be more
efficiently spent creating
individually tailored mappings
for individual contributors as
described for ONIX.

DDEX The DDEX schema is of similar descriptive
complexity to ONIX, but with the added
structural complexity of contents lists for each
“release”. These may be impossible to map
within LIDO, and thus certainly impossible with
ESE.

The comments above on
ONIX will apply here, given
the similarity between the
design of ONIX and DDEX,
and the higher complexity of
some DDEX structures.

The initial mapping of DDEX
to LIDO produced excellent
ESE, but this points to the
strength of the DDEX-LIDO
and LIDO-ESE mappings,
rather than the usefulness of a
DDEX-ESE mapping.

EIDR The EIDR schema is essentially a minimum
referent data schema, and thus is relatively self-
contained. It therefore offers the most promise
for a more stable mapping to ESE, although the
lack of domain-specific audio-visual content
description elements in Dublin Core will probably
mean this would be extremely minimal.

As for DDEX above, the EIDR-
LIDO-ESE pipeline so far
works very well; this could be
used to derive a stable EIDR-
ESE mapping, but since EIDR
data can only come from one
provider (EIDR itself) this
seems inefficient.

The experience of mapping ONIX and IPTC to ESE and the results of initial LIDO mappings showed conclusively
that despite apparent mapping simplicity, this a false economy because it creates far more problems in the
areas of legal-commercial agreements and the capabilities of the aggregation platform to apply business rules.
Having attempted the first two mappings, therefore, attention was focussed exclusively on creating truly
standardised semantic mappings to LIDO.

 Page 38 of 326

LINKED HERITAGE
Deliverable D4.2

5.2 MID-COMPLEXITY MAPPING – ESE VIA LIDO

The core result of T4.4. is therefore the semantic mapping of ONIX 3.0.1. to LIDO 1.0., with similar mappings of
ONIX 2.1., DDEX, EIDR and IPTC to follow. This mapping decision is in line with the “intermediary aggregator”
approach taken for other Linked Heritage partners, as well a significant number of other projects contributing
to Europeana74. This will provide the same benefits as aggregating cultural heritage data this way:

 Preservation of full, accurate semantics (for elements that can be included in LIDO);

 Preservation of (most) data granularity;

 Stability of mapping (in the face of changes within the Europeana data model);

 Separate control of LIDO database.

As noted above, the provision for retail links currently available in LIDO and MINT is not optimal; however, a
minimum can be offered and the full cultural value of the product data aggregation should also be achieved.

Mid-level complexity mapping- industry schemas to ESE via LIDO

The above schematic for this mapping complexity level shows another decisive benefit – full respect for the
existing best practice in semantic mappings by creation of agreed, standardised mappings between two
standard schemas of well-defined semantics. A final benefit is that the existing MINT aggregation pipeline can
be used to test the full data supply and commercial contributors can rely on the expertise and support of the
Linked Heritage partners as well as that of Europeana. It is expected that this testing will take the form of
“prototype” uploads (see section 15.2.2 and Appendix 5) of real commercial data feeds through MINT/LIDO
into Europeana/ESE, so that further development of the legal-commercial framework can be undertaken by
gaining feedback from the contributors, collecting statistics, and gathering any further technical requirements
for the aggregation process itself.

There is not yet a standard mapping of LIDO to EDM in use within Linked Heritage so this option was not
considered. However, it would not differ significantly from the approach described above, or the one
described in the next section.

5.3 MAPPING TO EDM – BENEFITS AND CHALLENGES

Another possibility considered but, because of time constraints, not fully explored, was a direct mapping of
industry standard schemas to EDM.

74

See the list at http://mint.image.ece.ntua.gr/redmine/projects/mint/wiki/Projects

Industry
sector

schema

•ONIX

•DDEX

•EIDR

•IPTC

LIDO

•Standardised
mappings

•Preservation of full
original semantics

•Pre-defined
conversion to ESE

ESE
• Testing

against use
cases for
sectors

http://mint.image.ece.ntua.gr/redmine/projects/mint/wiki/Projects

 Page 39 of 326

LINKED HERITAGE
Deliverable D4.2

Alternative mapping option – industry schema direct to EDM

The main problem with this mapping approach would be that EDM inherits all the same problems as ESE, since
this is the core of the EDM schema. The improvements inherent in EDM, which are largely concerned with
events and relations, are already realised in the LIDO schema. The added structures for dealing with
alternative surrogates for a single Cultural Heritage Object are interesting, but the use case for dealing with
multiple views of a commercial product is very different (see section 5.1. and Appendix 2) and is not dealt with
by EDM. It is worth noting that a direct mapping of EIDR to EDM would, as for ESE, bring the most benefit as
the extra EDM relation elements could potentially express more of the EIDR semantics; however, as noted in
section 3.1., it would still be minimal and would apply only to data exchange agreements directly between the
EIDR registry and Europeana.

5.4 MAXIMUM COMPLEXITY SOLUTION – EXTENSION OR NEW SCHEMA?

The final option to consider would be to extend LIDO, as has been discussed in the context of FRBRoo, or use
an even more general data model, perhaps generated through the VMF. This solution would be an ideal option
except that its complexity means that it would require far more time and resources than currently available.

5.5 COMPLEXITY LEVEL CHOSEN FOR THIS REPORT

Having explored several of the available options, Work Group 4 decided to focus on standard, agreed
mappings of industry sector schemas to LIDO, primarily the ONIX for Books 3.0.1. and 2.1. schemas, but with
initial work on the other three schemas so that at least initial semantic mappings in each area could be
available for testing on real data within the timescale of the project, and so that work on ESE mappings could
be correctly placed within the business case development work of D.4.3. Knowing that best practice indicates
compatibility with FRBRoo or VMF, and a stronger representation of rights data, recommendations were also
developed for extending LIDO at a later stage through minor revisions to the existing version of the standard.

Industry
sector

schema

• ONIX

• DDEX

• EIDR

• IPTC

EDM
• Legacy ESE terms

• EDM enrichment
terms

• ORE aggregation

 Page 40 of 326

LINKED HERITAGE
Deliverable D4.2

6 TECHNICAL SPECIFICATION – LIDO MAPPINGS

Although mappings of all four sector schemas were attempted, the ONIX for Books mapping was the only one
ready for publication by the date of this report. This was because:

 It is the only schema mapping mentioned explicitly in the Description of Work and was thus accorded
priority status;

 It is within the direct expertise of EDItEUR as the standards body that maintains and develops ONIX;

 Large amounts of sample data are easily available to create and test the mapping;

 It is complex and rich enough to represent the full range of semantic and technical problems relevant
for the commercial schema-to-LIDO mapping landscape.

6.1 ONIX FOR BOOKS 3.0.1 MAPPING AS EXEMPLAR

The experimental mappings from the industry sector schemas to LIDO took the form, described above, of the
normal Linked Heritage mapping work, mostly within the MINT tool and based on instance data, with the
addition of a detailed comparison of the semantics and syntax of the schemas themselves, as well as the
attempt to create an XSLT transformation for the full schema, even when instance data did not use every
element of the industry sector schema.

Creating these mappings (although only the ONIX 3.0.1 mapping is as yet fully specified) had several benefits
reported here:

 Achieving the core objective of representing ONIX for Books data in LIDO;

 Testing the ONIX to LIDO mapping with instance data and appraising suitability of the current LIDO to
ESE mapping for this purpose;

 Allowing for a full exploration of the semantics and syntax of LIDO and its capacity to represent
product types as well as unique individuals;

 Practical exploitation of the functionality of MINT and an appraisal of its strengths and areas for
potential further development;

 Comparison of LIDO and MINT’s capabilities for aggregating a wide range of media resources across
all four media sectors.

The ONIX for Books 3.0.1 mapping to LIDO is described here in detail as an example of a complete LIDO
mapping from the commercial sector. Findings from the ONIX mapping were found to apply generally across
all four sectors since the ONIX standard is highly developed and incorporates all the essential features of
commercial product data; some other findings were sector specific and are reported separately.

6.2 PRESENTATION OF MAPPINGS

Outline discussion of the LIDO mappings is presented here in the main body of the report, so that although
technical accuracy is conveyed, less specialised knowledge of XML, XSLT and the details of the LIDO and ONIX
for Books standards will be required. For readers interested in the detailed structure of the ONIX mapping, it is
presented here as a full XSLT listing plus commentary in Appendix 3, and also as an equivalent but easier to
read mapping syntax in the separate Excel spreadsheet uploaded to the Linked Heritage website alongside this
report.

6.3 DOCUMENTING SEMANTIC MAPPINGS

One of the apparent ironies of the current applied research scene with respect to data integration and Web-
enabled data is the prominence of references to semantics despite the seeming lack of detailed discussions of
semantic mappings understandable by the moderately technical, non-domain expert reader. Of course, many
such mappings are thoroughly documented, but the verbosity and complexity of their expressions in languages
such as XSLT make them unwieldy for readers and almost impossible to present in full while preserving their
significance.

 Page 41 of 326

LINKED HERITAGE
Deliverable D4.2

Here, a combination of approaches has been taken, to enable a reader-friendly narrative that gives sufficient
technical detail to make the report usable for Linked Heritage and as a starting point for further research and
development. The main approaches are:

 Presentation of large, complex schemas in outline at a low level of detail, giving a heuristic overview
of the main schema “entities”; usually this means presenting “target right” to show the framework
into which the source schema will be analysed for re-expression;

 Description of detailed semantic mappings – statements of equivalence – presented “target left” so
that a readable, narrative-style formulation is available (though still following the logical order of the
target schema as this is the “language” which provides the “context” of the mappings);

6.4 MAPPING SYNTAX USED IN ACCOMPANYING SPREADSHEETS

The ONIX 3.0.1 mapping made available along with this report (as for all spreadsheets of mappings still to be
released) uses a simplified syntax to describe semantic equivalences and the XSLT syntax used to express
these. It follows the actual mapping decisions made in the MINT aggregator and thus is a translation of XSLT,
but is suitable for non-specialist readers. The syntax is as follows:

Notation in spreadsheet Explanation

Map this pair if this XPATH… Condition source element

Exists Element present in source XML?

> Value is more than…

< Value is less than…

= Same as…

…in this namespace… ONIX code list [x]

AND

Logical operator to link to row directly below OR

NOT

…in preference order… Order of preference of several mapping options listed
directly below

…and use this constant value (or Code List
map) in the target XPATH

Value to be used either
a) to produce a constant output value, or
b) compare with the source element value according to
specified value operator (above)

+ Concatenate value directly below

& Map value below to a new target element

 Page 42 of 326

LINKED HERITAGE
Deliverable D4.2

7 LIDO AS A TARGET SCHEMA FOR PRODUCT DATA

Here a general outline of the LIDO schema itself is described, forming a narrative structure for the mappings to
follow and giving readers new to LIDO an informal but accurate idea of its logical structure.

At each stage general points that count for and against LIDO’s suitability as an integration format for
commercial product data are noted. These apply across all four media sectors.

7.1 LIDO SCHEMA OUTLINE

The LIDO schema has a flexible top-level structure that optionally allows one LIDO file to carry any number of
object records:

LIDO Comment

<lido:lidoWrap> Optional “wrap” to contain multiple lido records

<lido:lido> … </lido:lido> LIDO record #1 [subheadings hidden for clarity]

<lido:lido> … </lido:lido> LIDO record #2

<lido:lido> … </lido:lido> LIDO record #3… etc.

</lido:lidoWrap>

The optional multiplicity of records in one LIDO XML document is summarised in a different way in the
structure diagram below. Note that the diagram simply shows the cardinalities of the subelements in the
schema hierarchy and the attributes attached to each element; it is not a full UML class diagram.

Top level structure of LIDO documents (simplified hierarchy and cardinalities)

When <lidoWrap> is not present, a single <lido> element instead forms the root node of the XML document
i.e. the file only contains one object record. Two of the source schemas, ONIX and DDEX, have a similar top-
level structure (one message containing multiple “product” or “release” records) and so the root and item
level nodes can be matched easily within LIDO and MINT. For the other two schemas, EIDR and IPTC, the
situation is more complex, but source files can be pre-processed with relative ease to achieve the same result,
matching item nodes to either <lidoWrap> or <lido> at the convenience of the data provider.

 Page 43 of 326

LINKED HERITAGE
Deliverable D4.2

Within the item record defined by the <lido> element, the structural and data elements are then broken down
into descriptive and administrative types, further subdivided as shown below. In the following tables, XML
elements are shown nested as in an actual instance data file; empty nodes are shown both opening and closing
where the <element /> in question is fully enclosed by its superelement.

File: D4-2_Specification-of-technologies-chosen.docx Page 44 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO Comments

<lido:lido>

 <lido:lidoRecID/> Identifier for this LIDO record.

 <lido:category/>
The type of CIDOC-CRM entity described by this LIDO record. For product data, always F3

Manifestation Product Type.

 <lido:descriptiveMetadata>

 <lido:objectClassificationWrap/> Use of controlled vocabularies to classify objects; effectively the same as for products.

 <lido:objectIdentificationWrap/>
Information that distinguishes this object from others in the same class. Most is similar for products

except for two areas unique to individual object (see detailed breakdown in following sections).

 <lido:eventWrap/>

Events will be taken from an object’s “life history” or a product’s “life cycle”.

The event structure allows the decomposition of data from many different “flattened” structures and

integration into one database (as in VMF)

 <lido:objectRelationWrap/>
Relations allow links between object or product records to be established and assigned types

(classifications).

 </lido:descriptiveMetadata>

 Page 45 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO Comments

 <lido:administrativeMetadata>

 <lido:rightsWorkWrap/> Rights relating to the object itself. For products, broadly the same.

 <lido:recordWrap/> Information about this LIDO record’s source data. Includes link to DO in context.

 <lido:resourceWrap/>
Information about digital representations of the CHO, including the DO. For most products, analogous

to CHO resources but for photos, could refer to different versions or even related products.

 </lido:administrativeMetadata>

</lido:lido>

The <lido/> encloses two sections, dividing the content into “descriptive” and “administrative” metadata
75

, as well as a small number of initial elements applying to the

“whole record”. These are described in the next sections.

7.1.1 LIDO “whole record” elements

LIDO Comments

 <lido:lido> The containing element for the whole object record

 <lido:lidoRecID/> An identifier for the LIDO record itself. At least one record ID is normally present in product data.

 <lido:category/>
The type or scope of the LIDO record; recommended to be taken from the CIDOC-CRM.

For commercial products this should always be set to F3 Manifestation Product Type. See the
discussion in section 5.1 and Appendix 2 for the justification.

75

 This follows the typical classification found in most discussions of metadata (e.g. http://www.niso.org/publications/press/UnderstandingMetadata.pdf as cited in D4.1).
LIDO does not appear to have been based on the principle that “all data are rights data” (see http://www.dlib.org/dlib/july98/rust/07rust.html) and more significantly, this
structure is a closer fit for the “static repository” model of data exchange (see D4.1, section 5.3).

http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://www.dlib.org/dlib/july98/rust/07rust.html

 Page 46 of 326

LINKED HERITAGE
Deliverable D4.2

7.1.2 LIDO Descriptive Metadata – Classification

LIDO Comments

 <lido:descriptiveMetadata> Wrapper for the descriptive elements.

 <lido:objectClassificationWrap> Wrapper for the two levels of classification specified in LIDO.

 <lido:objectWorkTypeWrap/> The “Work Type” is defined as the most specific class that applies to the entire object; thus it
is a subset of the classifications below.

 <lido:classificationWrap/>
All other classifications that can be applied to the object; specifically, those that are
described with controlled value lists. Both this and the objectWorkType sets take pairs of
label (“term”) and concept identifier.

 </lido:objectClassificationWrap>

7.1.3 LIDO Descriptive Metadata – Identification

Those in bold are the areas where the LIDO schema is particularly unsuitable for use with product types as they are not necessarily directly inherited by the type from its
instances (or product exemplar).

LIDO Comments

 <lido:objectIdentificationWrap>

 <lido:titleWrap/> Titles for the object (product)

 <lido:inscriptionsWrap/> Text appearing on the object

 <lido:repositoryWrap/>
The physical place and organisation of custody of the object – for products
there is none

<lido:displayStateEditionWrap/> Details of the “state” of completion of the “work” represented by this unique
item – e.g. a stage in production or an edition

76

 <lido:objectDescriptionWrap/> Descriptive notes; found in all commercial schemas

76 See a full explanation of “state” in heritage terminologies at: http://www.getty.edu/research/publications/electronic_publications/cdwa/5state.html - although this is
one aspect of heritage object description not possible for (most) product classes, it hints at an identification of work types already present in LIDO.

http://www.getty.edu/research/publications/electronic_publications/cdwa/5state.html

 Page 47 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO Comments

 <lido:objectMeasurementsWrap/> A generalised set of measurements (dimension, value and units) with added
qualifiers to specify the aspect of the object being measured

 </lido:objectIdentificationWrap>

7.1.4 LIDO Descriptive Metadata – Events

LIDO Comments

<lido:eventWrap>

<lido:eventID/>

LIDO views “events” in the context of CIDOC-CRM’s interest in documented historical events; hence
these entities can be identified for linking and comparison. The classes of events allowed currently in
LIDO (see eventType below) naturally reflect those in which objects were the subject of the event but in
principle need not

77
.

<lido:eventType/> The LIDO specification comes with an event type list (see section 4.4.5) based on that found in CIDOC-
CRM and therefore compatible with the FRBRoo analysis.

<lido:roleEvent/>
Since this field does not yet have an assigned controlled vocabulary, in principle it could take a wide
variety of values; in practice, for objects and works, it is likely to assume the value of the passive voice of
the eventType.

<lido:eventName/> Historical events are very likely to have names and titles; in commercial metadata, this is less important, if
at all.

<lido:eventActor>
The actor information is likely to be very similar in both heritage and commercial contexts since the basic
scenario is the creation and publishing of a creative “work”, whether in one or a class of many physical
items.

<lido:actorID/>
Note that here, the identifier is for the actor themselves, whereas the main identifier for public personae in
the commercial sector, the ISNI, is for names.

78

<lido:nameActorSet/>
As noted above, in commercial schemas, the ID above would be linked to one or more variants of a name,
rather than an independent data field.

<lido:nationalityActor/> Places of birth and death are likely to be relevant for both heritage and commercial identification.

77 See for example the commonly used CIDOC-CRM Core example describing the Yalta Conference: http://www.cidoc-crm.org/crm_core/core_examples/yalta.htm
78

 See D4.1 section 6.2.1 and also section 9.5.7 of this report for a discussion of name versus person identifiers.

http://www.cidoc-crm.org/crm_core/core_examples/yalta.htm

 Page 48 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO Comments

<lido:vitalDatesActor/>
As above, birth and death dates are relevant to both sectors, although for some public identities, they may
count as private information in the commercial sector.

<lido:genderActor/> Gender is unlikely to be found in commercial sector data.

</lido:eventActor>

<lido:culture/>

The description of a work by its originating culture is highly specific to the heritage sector
79

 but could
potentially be found in some commercial data where the content has a general “cultural” or “national”
aspect (e.g. published recordings of ethnic music, textual compilations of oral traditions, or photographs of
national dress).

<lido:eventDate/> The date is fundamental to identifying events in both sectors.

<lido:periodName/>
Again, the use of named time spans is specific to cultural heritage

80
, but as for “culture”, may be present

in heritage publications where it will represent the subject matter (or possibly, by analogy, the style of a
replica – see Appendix 3).

<lido:eventPlace/> As with the date, a fundamental identifier for any event in both sectors.

<lido:eventMethod/> Further qualifies the activity in eventType; found in both sectors.

<lido:eventMaterialsTech/> Mainly of interest in the heritage sector, but again, potentially used for commercial products where the
material (e.g. of the pages or binding of a printed book) is of interest.

<lido:thingPresent/> A generalised reference to another object involved in this event; potentially interesting for both sectors but
probably uncommon in daily use in commercial data.

<lido:relatedEvent/>
A generalised related event entity is unusual in commercial schemas, since they do not attempt to portray
historical narrative. For the purpose of decomposing a complex term or expression by mapping into LIDO,
this structure could potentially be used but this would require significant extra work from both sectors.

<lido:eventDescription/> Descriptive notes may be found in both sectors, but are more likely to be qualified by limitation to one
aspect of an event in commercial schemas.

</lido:eventWrap>

79 See the CDWA notes for examples of heritage usage: http://www.getty.edu/research/publications/electronic_publications/cdwa/14creation.html#culture
80

 See CDWA discussion of period and style: http://www.getty.edu/research/publications/electronic_publications/cdwa/17styles.html

http://www.getty.edu/research/publications/electronic_publications/cdwa/14creation.html#culture
http://www.getty.edu/research/publications/electronic_publications/cdwa/17styles.html

 Page 49 of 326

LINKED HERITAGE
Deliverable D4.2

7.1.5 LIDO Descriptive Metadata – Relation

LIDO Comments

 <lido:objectRelationWrap>

 <lido:subjectWrap/>

A subject in LIDO can be a simple “concept” (i.e. an entry from a classification scheme) or an
entity (place, actor, date, event or object). Detailed subject information is only found in two
commercial schemas (ONIX for Books and IPTC), even though for the other two (DDex and
EIDR) it could be provided (perhaps through links to another source). In any case, the LIDO
structures cover the full range of subjects found in commercial data.

 <lido:relatedWorksWrap/>
The section in LIDO for related works is a complete generalisation allowing any other class of
relation than “subject”. This is present in some commercial schemas, and normally a type of
relation is specified.

 </lido:objectRelationWrap>

 </lido:descriptiveMetadata>

7.1.6 LIDO Administrative Metadata – Rights Work

LIDO Comments

 <lido:administrativeMetadata> Wrapper for administrative metadata.

 <lido:rightsWorkWrap/>

A “right” set in LIDO is a basic structure composed of a type, date and rightsholder. This is
significantly simpler than most rights in commercial data, which very often depend on territories,
markets, relative publication and release dates of other products, and uses made of the products
described; not to mention the nesting of rights within a single product due to the nature of
collaborative, multimedia, or performance- or recording-based works.
It should be noted that with an expanding scope, LIDO may begin to describe precisely such
works in current or future projects (see sections 4.3 and 15.2.5).

 Page 50 of 326

LINKED HERITAGE
Deliverable D4.2

7.1.7 LIDO Administrative Metadata – Record

LIDO Comments

 <lido:recordWrap/> Describes the source record in terms of ID, source, type and associated rights. Most of these are present in
some form in commercial data, except for a rights statement. LIDO record data also includes the
recordInfoSet which identifies a public version of the same source record used to produce the LIDO; the URL
here (recordInfoLink) is used for the Linked Heritage and Europeana use case of providing the digital object in
context (europeana:shownAt). The product in context link is rarely found directly in product information data
even if the schema allows it (as ONIX for Books does) because it is commercially sensitive information.

7.1.8 LIDO Administrative Metadata – Resource

LIDO Comments

 <lido:resourceWrap/>

This section is used to hold information about the Digital Object (see section 3.1) in the Linked Heritage and
Europeana aggregation context.

The LIDO specification states that this section excludes ”items that are considered objects / works in their
own right”, a problematic view since, by European law, and in the commercial perspective, this would exclude
all resources, as even an informal personal photograph can be considered a creative work for copyright
purposes. The LIDO specification seems to implicitly acknowledge this by providing a rights section (details
below).

<lido:resourceID> The identifier for the original resource.

<lido:resourceRepresentation> Contains a URL and measurements of different sized versions of the same image file.

<lido:resourceType> A broad classification of the genre of the image, rather than subject matter or technical format.

<lido:resourceRelType>
Rather than describing the “relationship” of the image to its subject in terms of recording process (as
resourceType does) this actually records the purpose or context for taking the image.

<lido:resourcePerspective>
This applies above all to physical items and is unlikely to appear in creative media product data (even if it
could technically appear in a photo product description, it is not found in the IPTC vocabularies explicitly).

<lido:resourceDescription> Simple descriptive note often found in commercial data.

<lido:resourceSource> This and the field below are essential data for commercial use.

<lido:rightsResource>
As mentioned for the rights fields above (section 8.1.6) this is a far simpler expression than is normally found
in most commercial data. See in particular the discussion of photo rights in sections 12 and 15.2.5.

 Page 51 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO Comments

 </lido:administrativeMetadata>

</lido:lido>

7.2 LIDO ATTRIBUTES

The use of XML attributes in LIDO mainly follows the design principle mentioned in section 4.4.3; they are used to constrain the encoding or semantic category of the data
in the elements they are attached to. However, due to the LIDO’s use as an aggregation format, and its bias towards heritage objects, very few of these elements have
analogues in commercial data. Sometimes this is unproblematic but a small number of examples may lead to difficulties in aggregating both commercial and more complex
heritage data, primarily because use of attributes prevents delivery of multiple values.

LIDO attribute
Similar attributes or elements in
commercial schemas?

Comments

@addedSearchTerm None
Used in aggregation to distinguish terms meant for record retrieval only. This has
a small number of equivalents in commercial sector data, for example, product
titles used only by one part of a supply chain.

@codecResource Normally provided as elements to give
details

Codec information is given in more detail when a digital resource forms the main
content of a product.

@encodinganalog None
Used in aggregation to represent the source schema’s field for the same data.
Not present in commercial data (although IPTC’s use of external namespaces is
similar) but equivalents can be found in mapping tools such as VMF.

@formatResource Normally provided as elements to give
details

Internet MIME types for resource format are inappropriate for most commercial
schemas, although sometimes used.

@geographicalEntity None
Geographical location is not normally specified in product metadata (although it
could occur e.g. in a subject scheme, especially for cartographic products).

@label None
Used in aggregation to capture field labels for display; not used in product data
where a label is more likely created by the data’s end user.

@politicalEntity Some
Normally part of an element definition of e.g. country of manufacture, city of
publication, sales right territory.

@pref Some Normally present as a “flag” element or binary data value.

 Page 52 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO attribute
Similar attributes or elements in
commercial schemas?

Comments

@relatedencoding None

Used in aggregation to denote the namespace from which source element (field)
names are taken. Can be extracted from commercial schemas expressed as XML
schema definitions. The relationship between the namespace captured here and
the identifiers for the schema’s elements (mapped to the @encodinganalog
attribute) follows the same pattern as the elements of a controlled value set or
SKOS concept scheme, and could potentially be managed using the Linked
Heritage TMP.

@sortorder Some
Often used in specific circumstances in commercial schemas but expressed in
very different ways (e.g. as an RDF sequence in IPTC; as XML values in ONIX
for Books).

@source Normally provided as elements to give
details

References a controlled value set for the element in LIDO; in commercial
schemas normally more detail is needed; for example, the version of the
vocabulary, or the name of a proprietary classification.

@type Normally provided as elements to give
details

Because type vocabularies depend heavily on the data in question, and its use
case, in commercial data this is expressed in more complex ways than the single
attribute available in LIDO.

@xml:lang Some
The XML language attribute is problematic because of the complex controlled
value set used to populate it. In commercial schemas (e.g. DDex) it can appear,
but often a schema-specific language element is used for simplicity.

File: D4-2_Specification-of-technologies-chosen.docx Page 53 of 326

LINKED HERITAGE
Deliverable D4.2

7.3 SYNTACTIC-SEMANTIC ASPECTS

Here we will note some features of LIDO found across the entire schema, where the schema’s syntactic
structure, somewhat reflecting its conceptual basis in CIDOC-CRM, affects the semantics that can be
expressed.

7.3.1 Object and resource separation

The LIDO schema allows far more details to be recorded about the CHO than about its digital representation
(the DO). This appears to be a feature inherited from CDWA Lite81. In other cultural heritage schemas, notably
the VRA Core schema

82
 it is possible to specify as much information about the resource representing a cultural

work, as for the cultural work itself, effectively treating the DO as a CHO in its own right. Of course, VRA Core is
still far less detailed as a whole than LIDO; the key difference is that more culturally relevant details can be
added to the DO part of the record (actually in VRA it would be a full record each for the DO and CHO, linked
through identifiers).

For books, music and film data this is probably unproblematic. The image of a book, CD or DVD cover, while
certainly a creative work in its own right, for these purposes is used primarily in a compressed form and
treated as marketing collateral. In the case of commercial photographs, the DO is certainly to be considered as
important as any CHO it depicts, as the digital photography file is itself the “product”. This may mean that
LIDO’s treatment of digital resources is not sufficiently detailed.

7.3.2 Event structure

As explained in section 4.4.6, the event or “contextual” approach to metadata is the most expressive and
allows practically any type of data to be integrated. The LIDO schema incorporates an event structure
explicitly, which, although specialised somewhat for historical museum object description, can be considered
general enough for integration of basic event data from any domain.

Events in a product’s lifecycle often appear through “flattened” semantics in product data (although notably
DDex contains event-like composites for dates, and many parts of ONIX are full or nearly full event structures).
Extracting the relevant parts of the event information into LIDO will allow for integration of data from other
sources to create more culturally valuable data sets and links.

7.3.3 Internal and display elements

The nature of LIDO as aggregator schema is apparent in its separation of “internal” data for search and
retrieval from “display” data (normally at a “set” level in the schema) and the “label” attributes that can be
attached to most elements (see above, section 8.2). This type of separation is only partially realised in
commercial product data, where much of the data may be “raw” information for use within the supply chain,
or else require significant processing to recompose it in an intuitively comprehensible form for end-users.
Hence the display elements in LIDO may be more useful for capturing “alternative” free-text data elements
from otherwise complex source schema sections, and the labels may be better used for relating data values to
their original schema and best practice to aid implementation of a user-facing display (see notes on ESE display
in section 6.1 and recommendations in section 15.2.1).

7.3.4 Appellation Values and Sources

The LIDO schema’s structure is partly derived from the CIDOC-CRM, which reflects museum documentation
practice. A core value of this practice is the documentation of “appellations” (names, titles and other labels)

81 See the history of LIDO’s development here: http://network.icom.museum/cidoc/working-groups/data-
harvesting-and-interchange/lido-overview/lidos-background/.
82

 See the VRA Core 4.0 introduction here: http://www.loc.gov/standards/vracore/VRA_Core4_Intro.pdf

http://network.icom.museum/cidoc/working-groups/data-harvesting-and-interchange/lido-overview/lidos-background/
http://network.icom.museum/cidoc/working-groups/data-harvesting-and-interchange/lido-overview/lidos-background/
http://www.loc.gov/standards/vracore/VRA_Core4_Intro.pdf

 Page 54 of 326

LINKED HERITAGE
Deliverable D4.2

and their “sources” in harmony with historical methods of citation, and to allow multiple viewpoints on each
object. This approach is foreign to the use of commercial schemas, where each distinct part of a product
description is ideally an integral product of one reliable supply chain partner83. Thus the source element will
not be often employed for aggregating this data. On the other hand, various types and connected parts of
titles and names are almost always supplied in commercial data for use in different contexts; this does not
appear to be supported by LIDO’s name model.

7.3.5 Concept IDs and Terms

Finally, LIDO extensively uses a another element pair consisting of a “concept ID” and free-text “term” to
provide concepts from controlled value sets when these are part of the core source data, as often happens in
commercial data. The correspondence is only partial, as when these pairs must be mapped to a LIDO “type”,
only a term can be used since LIDO (mostly) expresses types with the @lido:type attribute.

83

 See discussion of metadata use cases in D4.1 section 5.3.4.

File: D4-2_Specification-of-technologies-chosen.docx Page 55 of 326

LINKED HERITAGE
Deliverable D4.2

8 ONIX FOR BOOKS 3.0.1 AND 2.1 MAPPINGS

This section details the entire semantic and syntactic mapping of the ONIX for Books version 3.0.1 product
information message to LIDO. In the final section details of the related mapping of the previous (and most
widely used) version, ONIX for Books 2.1, are given. Because ONIX 3.0.1 is the most up-to-date version, and
includes such a comprehensive range of the features exhibited by commercial data schemas generally, it
proved an excellent proxy for commercial data in general for the purposes of this exercise.

8.1 CONDITIONS FOR INCLUSION OF ONIX RECORDS

Key XPATHs (see section 4.4.3 and glossary in Appendix 1 for this term) within an ONIX message specify an
aspect of the product that is crucial for that product’s inclusion or not in Linked Heritage or Europeana. These
are listed below, although note that the first criterion relates to wider issues of the legal-commercial
framework (selection of data that can be acceptably supplied to all end customers) and the data model and
software platform (filtering of data according to e.g. territory, absolute or relative release dates).

ONIX XPATH
All begin with

ONIXMessage/Product/

Allowed
values for
inclusion of
record

Meaning

…RecordSourceType 01 (other
values may be
acceptable)

Indicates which partner in the
product supply chain is the
source of this record. Could be
a convenient way to select only
records that originate directly
from the publisher as the
“repository” of this product.

…NotificationType 03 Indicates a complete record for
a book already or “soon to be”
published. Thus it should be
available to retail customers.

…PublishingDetail/PublishingStatus 04 The product is “active” and can
be ordered from the publisher

…DescriptiveDetail/ProductComposition 00 or 10 Indicates a product meant for
retail.

…DescriptiveDetail/TitleDetail/TitleType

[and other conditions – see the restrictions
on titles that can currently be mapped to LIDO
in section 9.5.3]

01 The product record provides a
“distinctive title” for the product,
to map to the mandatory LIDO
elements in lido:titleSet.

These conditions specify the classes of ONIX records that should be included; implementation of these rules
currently would have to be done by data contributors themselves, or as part of a pre-processing stage before
aggregation in MINT.

Note that since this part of the specification touches on agreements made with data providers, it remains to
be addressed in D4.3.

8.2 ONIX CODE LISTS

The ONIX code lists were included in the XSLT mapping as variable “maps” like the one below for product
identifier types (code list 5)84:

84

 Full ONIX code lists: http://www.editeur.org/ONIX/book/codelists/current.html

http://www.editeur.org/ONIX/book/codelists/current.html

 Page 56 of 326

LINKED HERITAGE
Deliverable D4.2

<xsl:variable name="map0">

 <map value="GTIN-13">03</map>

 <map value="UPC">04</map>

 <map value="ISMN">05</map>

 <map value="DOI">06</map>

 <map value="LCCN">13</map>

 <map value="GTIN-14">14</map>

 <map value="ISBN">15</map>

 <map value="Legal deposit number">17</map>

 <map value="URN">22</map>

 <map value="OCLC number">23</map>

 <map value="ISBN">24</map>

 <map value="ISMN">25</map>

 <map value="ISBN">02</map>

 </xsl:variable>

This “map” replicates the code and label (SKOS:notation and SKOS:prefLabel) columns of ONIX code list 5 and
allows MINT to complete the @type attribute for <onix:IDValue> elements wherever they are present in the
input ONIX file. Since they can occur in many places, such as the published identifier for the product of interest
itself, related products and parts of products (which are products in their own right), the code list also appears
again in maps 138 and 156 (their numbering is in multiples of 2). A simple optimisation of the XSLT code would
be to re-use the same XSLT variable in every instance instead; this is not yet possible in MINT.

This is a necessary duplication at present since there is no other way to refer to the code lists. It introduces
both redundant code, and the need to change the XSLT each time code lists are updated. One simple
improvement to the existing MINT software would be to allow custom names for the “maps” to link them to
their source data, so that mapping and schema owners such as EDItEUR could track them automatically even if
updating them manually.

It would be more efficient to refer to them using SKOS, and indeed this is planned by the Linked Heritage
terminology group. Replacing value maps like these with indirect references to a SKOS ConceptScheme would
also solve the problem of updates to the code lists; at present, since the codes are embedded in the mapping,
the XSLT must be updated when the code lists change (quarterly); by using a URI reference to the current list,
MINT could simply transform the codes into labels using the latest version each time a new ONIX record is
uploaded.

There are 87 such “maps” in the full XSLT, and their structure is entirely predictable from that above and the
relevant code list values and descriptions, so they have not been presented in Appendix 3 as part of the
commented listing. A simple list of the “map” variables, with the code lists they correspond to, is included
there instead.

8.3 ATTRIBUTE MAPPINGS (WHOLE LIDO RECORD)

A small number of LIDO attributes are used in a consistent way to map ONIX fields across the entire output
record. These are as follows.

8.3.1 @type

The LIDO @type attribute has been used in a variety of ways to map ONIX elements. The most general ONIX
elements using @lido:type were those representing dates, described entity identifiers, concept identifiers and
titles.

 Dates

ONIX dates mostly carry a @dateformat attribute, and in most cases this has been mapped to @lido:type for a
LIDO date element, using code list 55 to map the date format values (e.g. YYYYMMDD or YYYY). Exceptions are

 Page 57 of 326

LINKED HERITAGE
Deliverable D4.2

when the ONIX element is explicitly limited to one temporal term – mostly year
85

. Then the @lido:type is
simply set to the equivalent text for that format, in the case of year, “YYYY”.

The LIDO schema specification for date elements states “General format: YYYY[-MM[-DD]] Format is according
to ISO 8601”, though it is not clear if this means separators should always be used or not, and whether other
ISO 8601 formats than YYYY[-MM[-DD]] are also acceptable. In any case, neither the LIDO XML schema nor
MINT validate for this, and most ONIX date format options fall within the range of ISO 8601. The preservation
of ONIX @dateformat should allow applications to properly use the LIDO dates aggregated from ONIX
messages.

 Described entity identifiers

The ONIX elements IDTypeName and those whose reference names are suffixed -IDType are used in different
contexts throughout the ONIX for Books message. The -IDType element takes a value from code list
determined by the type of entity identified and takes a value from the relevant code list for that context. In the
table below, these are listed in XML document order – note that most use is made of name and product
identifiers, and that the latter part of the ONIX message, where these are less common, is not mapped to
LIDO:

Entity class ONIX –IDType elements ONIX message context(s)

Persona
86

 or organisation
name

<SenderIDType>

<AddresseeIDType>

<RecordSourceIDType>

<NameIDType >

<ConferenceSponsorIDType>

<ImprintIDType>

<PublisherIDType>

<ProductContactIDType>

<CopyrightOwnerIDType>

Header

Product record

Contributor

Conference [not mapped to
LIDO]

Publishing

Product <ProductIDType> Product record

Product part

Sales rights [not mapped to
LIDO]

Related product

Work Related work

Collection
87

 Collection

Text item Content [not mapped to LIDO]

85 ONIX elements typically carrying only YYYY-format dates: YearOfAnnual (also spread of years, but this is not
supported in LIDO), ThesisYear, PrizeYear, CopyrightYear. YearOfAnnual is the only ONIX “year” element that
actually allows free-text input, although the specification specifically states that it should typically hold “years”
(not, therefore e.g. seasons, months, etc.).
86 See section 9.5.7 for discussion of data models for names.
87 In the heritage context, a “collection” is a set of individuals, two or more physical objects that could be (and
probably are) found in one location. Although the connection between the objects is an abstraction (like any
set) the collected objects are all unique items. In ONIX for Books, in contrast, a collection is an abstract set of
product types; a double abstraction. See also the ONIX best practice note on sets and series:
http://www.editeur.org/files/ONIX%203/ONIX_Books_Sets_and_Series_3.pdf

http://www.editeur.org/files/ONIX%203/ONIX_Books_Sets_and_Series_3.pdf

 Page 58 of 326

LINKED HERITAGE
Deliverable D4.2

Entity class ONIX –IDType elements ONIX message context(s)

Supplier <SalesOutletIDType>

<AgentIDType>

Sales rights [not mapped to
LIDO]

Product supply [not mapped to
LIDO]

Market publishing [not mapped
to LIDO]

In each case where an ONIX entity identifier is mapped to a LIDO identifier element, the ONIX –IDType element
is mapped to @lido:type attribute, using the relevant ONIX code list to convert the code values into a
meaningful, human-readable ID type name. The only exception to this rule is where the –IDType element
contains a code list value that specifies a proprietary identifier type; then the name of this identifier system is
then found as plain text in the onix:IDTypeName element which will be mapped to the @lido:label attribute
(see section 8.3.3 below).

 Concept identifiers

In most cases in the LIDO mapping, lido:conceptID elements take a @lido:type containing the value “local”
because they are direct imports of an ONIX code list value which is “local” to ONIX messages. In rare cases
such as subject classification schemes, the ONIX data values are references to external, published subject
schemes, and there, the name of the scheme is used for the LIDO identifier type (see section 9.5.13 for
discussion of this case).

 Titles

The @lido:type attribute was also found valuable for use mapping ONIX titles where there is a generic
subdivision of title and subtitle.

8.3.2 @xml:lang

The LIDO language attribute has been used in two ways to map ONIX data:

 Where a data value will be taken from an ONIX code list, @xml:lang was set to “en” since the primary
language of the code lists’ concept labels is English. However, this mapping will not be necessary if
and when SKOS code lists can be integrated into LIDO, since the language of the aggregated data
could then be taken from the SKOS concept.

 Where a date value has a corresponding @onix:language attribute it maps directly to the @xml:lang
LIDO element.

It must be noted here that this over-simplified mapping is contrary to the definition of @xml:lang88 since the
@onix:language attribute takes only ISO 639-2/B (three-letter) codes, whereas @xml:lang can have a mixture
of two- and three-letter codes as its content89 - hence any application using the LIDO data generated from this
ONIX mapping must re-map the @xml:lang content to acceptable IANA-registered values90. Note also the
recommendation on language code mappings in section 15.2.5 of this report.

8.3.3 @label

The @lido:label attribute has been used in two primary ways in this mapping from ONIX.

 To carry the source ONIX element’s name precisely as given in the ONIX for Books 3.0.1 specification
documentation (N.B. not the XML element name, but the natural language name used to describe the
unique element in the context of its position in the whole schema). Note that similarly to the

88 See http://www.w3.org/TR/REC-xml/#sec-lang-tag and http://tools.ietf.org/html/rfc4646 for the official
definitions of language tags for the xml:lang attribute.
89 See the W3C pages on language tags for XML for the full discussion of why the types of language codes are
mixed: http://www.w3.org/International/articles/language-tags/Overview.en.php
90

 See http://www.iana.org/protocols/ for the full list of IANA-registered language codes.

http://www.w3.org/TR/REC-xml/#sec-lang-tag
http://tools.ietf.org/html/rfc4646
http://www.w3.org/International/articles/language-tags/Overview.en.php
http://www.iana.org/protocols/

 Page 59 of 326

LINKED HERITAGE
Deliverable D4.2

@lido:encodinganalog case in the section below, this is a purely mechanical mapping, and thus has
only been implemented here where it adds to the semantic value and use case of the LIDO
aggregation (otherwise it simply increases the size of the XSLT script) and will only be fully
implemented for specific test data sets.

 To carry a very specialised label for elements where this is specified in a code list – the most obvious
example being the name of a proprietary identifier scheme as noted in section 9.5.13 above.

The natural language element name is appropriate for this LIDO element as it is specifically intended to carry
some of the semantics of the data value to the end user of the data, to aid in interpretation of the data value.
Any automated application of the element names should rely on the mapped XPATH from the XSLT, or unique
ID number of the element (see section 9.3.4) below.

8.3.4 @encodinganalog

The @lido:encodinganalog attribute allows preservation of the source element name (or reference) within the
aggregated LIDO record. In the case of schemas such as ONIX where an XML schema definition exists, each
uniquely defined possible element can be identified by an XPATH, or some other unique identifier. Currently
there is only one possibility for implementing this, using the ONIX schema element reference numbers
beginning “H” for header elements and “P” for product record elements (see Appendix 5 for these). EDItEUR is
considering releasing canonical HTTP URIs for the ONIX elements and these could potentially be used in future.
Since this mapping is entirely mechanical and would increase the length of the XSLT mapping script it has not
been included in the XSLT listing in Appendix 3 or the XSLT file accompanying this report, but will be
implemented with the first test or prototype data set.

8.4 ELEMENT MAPPINGS – LIDO RECORD

For each part of the mapping presented here, examples of output LIDO elements will be shown, and the
rationale behind the mapping method discussed. For the full XSLT, refer to Appendix 4, where the XSLT
stylesheet is found in full, divided into the same sections as here.

8.4.1 Template – lidoWrap

The ONIX for Books XML message format maps perfectly to LIDO’s flexible record/document structure, as
implemented in MINT. When an ONIX file is uploaded, the MINT “root node” is set to the <ONIXMessage>
element, and the “item root” is set to the XPATH for each ONIX Product Record: ONIXMessage/Product. This
ensures that the arrangement of data records within a document in ONIX and LIDO correspond at the top
level, one input product record mapping to one output object record.

8.4.2 Template - @relatedencoding

The LIDO @relatedencoding attribute is applied to the LIDO record element with a constant value specific to
the ONIX 3.0 mapping:

<lido:lido lido:relatedencoding="http://ns.editeur.org/onix/3.0/reference ">

This identifies the source encoding of the LIDO output as ONIX for Books 3.0; this is the same as specifying that
the namespace for the source elements is “http://ns.editeur.org/onix/3.0/reference”. It is worth noting at this
point that MINT assigns a new namespace prefix to elements in its input data based on the schema implicit in
the instances it has available, and this implied schema therefore does not necessarily include the whole
element set of the standard XSD. Note that it was not possible to map all ONIX elements at this time.

8.4.3 Template – lidoRecID

The identifier of the output LIDO record generated by MINT. This is produced by the aggregation process itself
and hence lies outside the scope of ONIX for Books. Note that the identifier of the source ONIX record in its

 Page 60 of 326

LINKED HERITAGE
Deliverable D4.2

original context is not lost but actually captured in the lido:recordID – the lido:lidoRecID is for the aggregated
record in its new context, linking the original data to its new LIDO expression.

8.4.4 Template – objectPublishedID

The LIDO objectPublishedID is produced from the ONIX ProductIdentifier composite. Exactly parallel to the
LIDO record structure, the ProductIdentifier is a composite found directly within the <Product> element, again
confirming the compatibility of the basic structure. The mapping uses the XSLT variable map0 to apply ONIX
code list 5 (Product identifier type) values to the @lido:type attribute for the objectPublishedID. Note also that
multiple public identifiers can refer to the product; there is no single “favoured” identifier, although the
mandatory (in ONIX) identifier for the product record, assigned by the record producer (see Appendix 2,
section 18.2.1) provides a central ID to link all the public IDs.

8.4.5 Template – category

Similarly to @relatedencoding above, this specifies a category of objects described by the LIDO record, namely,
product types as defined in FRBRoo. For the purposes of this mapping, the CRM namespace base URI has been
used with the FRBRoo concept code to create a LIDO conceptID, in line with the recommendation that CIDOC-
CRM should incorporate the FRBRoo and meta-CRM working drafts into its specification:

<lido:category>
<lido:conceptID lido:type="URI">http://www.cidoc-crm.org/crm-
concepts/F3</lido:conceptID>
<lido:term lido:addedSearchTerm="no">F3 Manifestation Product
Type</lido:term>

</lido:category>

This is more general than the @relatedencoding attribute, which, in this case, specifies “products described by
ONIX 3.0 records” – however, it is this element that indicates that all LIDO fields are taken to mean type
properties rather than individual item properties. For a fuller discussion of this point, see the section on LIDO-
CRM mappings in Appendix 2 and section 15.2.5.

8.4.6 Template – [default language of metadata]

The two top-level divisions of the main LIDO record elements are <lido:descriptiveMetadata> and
<lido:administrativeMetadata> and their @xml:lang attributes are specified in MINT at the top of the mapping
for convenience. They have been set to English for convenience in this mapping work, since the standard
sample message is in English, and many publishers will find it convenient to supply ONIX in English.

 <lido:descriptiveMetadata xml:lang="en">
 <lido:administrativeMetadata xml:lang="en">

ONIX 3.0 does not allow a top-level specification of the product record’s default language, although it
recommends this should be agreed between the partners exchanging messages so this LIDO element could
perhaps be set manually during the pre-processing stage which in any case will be necessary at the current
level of development (see sections 15.2.7 and 15.2.10).

File: D4-2_Specification-of-technologies-chosen.docx Page 61 of 326

LINKED HERITAGE
Deliverable D4.2

8.5 ELEMENT MAPPINGS – LIDO DESCRIPTIVE

The mappings for the LIDO “descriptive metadata” compose the majority of the mapping as a whole, since the
“product information” is the main content of an ONIX for Books message. As will become clear below, a large
proportion of the ONIX information content is represented by just one part of the LIDO record; the
“classification” structure composed of a concept identifier and corresponding term, both taken from a
controlled vocabulary. This highlights the fact that a large amount of “life cycle” information in ONIX messages
is, for convenience, conveyed by controled values from the ONIX code lists, even if, semantically, it has much
in common with the more granular structures for representing “life histories” in LIDO. The different emphases
of the two schemas are apparent here.
Another tension found right across the mappings detailed below is the treatment of “actors”; the directness of
LIDO and the indirectness of ONIX. In particular, “actor” entities in LIDO can be explicitly classified by a type
with the expected values “person, corporation, family, group”. ONIX actors’ names tend to be already
classified as either person or corporation; otherwise, this distinction is not made explicitly and could only be
extrapolated from the types of identifiers used in some cases, or from the context of other elements and
values. This reflects the comparatively complex uses envisaged for ONIX data as against LIDO records.

8.5.1 Classification – Object / Work Type

LIDO’s Classification wrapper contains only two subsections – “Work Type” and Classification. At a first reading
of the LIDO specification it is not obvious how these two parts differ from one another. Both consist
syntactically of the same <conceptID> and <term> elements (see the next section, 9.4.2, for a diagram of this
structure) so it appears that Work Types are simply another kind of Classification.

Indeed a clarification from one of the LIDO authors91 confirms that the Work Type is ontologically a sub-class
of Classification. As the LIDO specification states, it is “[t]he specific kind of object / work being described”; the
LIDO author further restricted this to “the most specific classification that applies to the whole work”. This is
coherent with the LIDO specification which links Work Type with the SPECTRUM term “Object name”, a term
used to describe the “collection type” an object belongs to in contexts such as the British Museum92 or the
Getty Research Institute93 controlled vocabularies.

This definition therefore aligns well with the ONIX class of Product Forms which provide a classification of
products within the context of a book retailer’s or publisher’s “collections”. The Product Forms in ONIX code
list 150 correspond to the media or format94 of the product; some examples from list 150 show this (the other
entries are more specific but not by many degrees):

Value
(code)

Description (label) Notes (scope note)

AA Audio Audio recording – detail unspecified.

AB Audio cassette Audio cassette (analogue).

AJ Downloadable audio file Audio recording downloadable online.

BA Book Book – detail unspecified.

BB Hardback Hardback or cased book.

BC Paperback / softback Paperback or other softback book.

91 Stein, R. (2012). Question and answer session on LIDO and MINT at Linked Heritage plenary meeting,
Stockholm.
92 See British Museum Object Names Thesaurus, available at:
http://www.collectionslink.org.uk/assets/thesaurus_bmon/Objintro.htm
93See CONA, at: http://www.getty.edu/research/tools/vocabularies/cona/about.html
94 The precise semantics in the ONIX code lists can sometimes mix aspects of the “content” and “carrier”
aspects of the product; in any case, both are relevant to what LIDO calls a “work type” since it defines an
integral concept of an object’s form and function. For more precise distinctions of these concepts the standard
references remain the indecs framework and the RDA/ONIX content and carrier analyses.

http://www.collectionslink.org.uk/assets/thesaurus_bmon/Objintro.htm
http://www.getty.edu/research/tools/vocabularies/cona/about.html

 Page 62 of 326

LINKED HERITAGE
Deliverable D4.2

Value
(code)

Description (label) Notes (scope note)

EA Digital
(delivered electronically)

Digital content delivered electronically
(delivery method unspecified).

PI Sheet music

PN Pictures or photographs

VA Video Video – detail unspecified.

Since <ProductForm> is a mandatory element for ONIX records, and so is <objectWorkType> in LIDO, the
constraints of both schemas support this interpretation. This is practical; but the LIDO objectWorkType should
also be “the most specific” classification. Product Forms are certainly whole-product classes, but they can be
very general. Therefore, from a wide number of possible elements in ONIX, <ProductFormDetail> was also
mapped to a LIDO <objectWorkType> to add specificity about the product’s medium and format without
compromising too far in the direction of classification by one aspect of the product rather than “the whole
work”. In fact, code list 175, “Product form detail”, parallels code list 150 fairly closely in further specifying the
formats and media listed there. These two code lists also serve the basic requirement that a retail customer
could buy the product found, since the format and media will define in a basic way if the customer will be able
to access the product’s intellectual content.

Since onix:ProductFormDetail is more specific, it maps to a lido:objectWorkType with a @sortorder="1",
whereas onix:ProductForm maps to a lido:objectWorkType with @sortorder="2" so that if both are present,
the most specific classification may be preferred for sorting purposes.

One other ONIX element was considered for this mapping <PrimaryContentType> since it is analogous to a
“Product Form” for the symbolic/intellectual content of the product. However, since it is primarily intended for
ebooks, not mandatory and, in any case, partly inferable from ProductForm values, this was mapped only as a
lido:classification.

8.5.2 Classification – Classification

As noted in section 9.5.1 above, the <classification> structure in LIDO has a simple form, pairing a <conceptID>
with a <term> in much the same way as ONIX code lists have a value and related description (e.g. in list 150
quoted in the section above). This is pictured below in the same kind of simple structure diagram as in section
8.1.1.

LIDO classification structures (simplified hierarchy and cardinalities)

 Page 63 of 326

LINKED HERITAGE
Deliverable D4.2

The mapping decision was made to represent ONIX elements with lido:classification if they fulfilled two
criteria:

 There is no other more specific class, preferably analogous to their context in ONIX, to map them into
using an existing LIDO event or relation structure;

 The ONIX element takes a value from a code list.

This had the positive result of following the LIDO specification which states that a lido:classification “category
belongs to a systematic scheme (classification) which groups objects of similar characteristics according to
uniform aspects”. On the other hand, the ONIX code lists, while sharing the structure of concept ID value and
term / label, are not always constructed semantically with this use in mind – certainly they are not always
“academic” or “scientific” classification schemes – and they often serve somewhat pragmatic uses rather than
conceptually neat descriptions. Thus they often describe very limited aspects of products relevant to particular
supply chain partners, or may only be interpretable in context. Semantically this also means that almost all of
the @type attributes for lido:conceptID were set to “local” – codes only recognised as part of ONIX messages –
although a few widely-used classification standards will be noted later in this section. Finally, this approach
also meant that many ONIX elements were mapped to lido:classification even if other related elements (with
clearer syntactic-semantic structures) were not.

Syntactically, the ONIX element value (a code list code) was mapped directly to the lido:conceptID and the
equivalent code list label mapped to the lido:term using an XSLT variable map (see section 9.2).

A simplified comparison of ONIX elements included in the lido:classification mapping against the example
categories of classification given in the LIDO specification shows some of the justification for this decision. Of
course many of the ONIX elements used to describe product types correspond only by analogy to the uses
envisaged for LIDO, mainly relating to cultural artefacts where manufacture correlates strongly with cultural
interest.

LIDO Classification
(example categories)

ONIX elements mapped
(rough equivalence or analogy)

Material ProductForm [inferred]

ProductFormDetail [inferred]

ProductFormFeature(Value)

Form ProductForm

ProductFormDetail

ProductComposition

Shape ProductFormDetail

Function ProductForm [inferred]

ProductFormDetail [inferred]

Region of origin CountryOfManufacture

Cultural context CollectionType

Language [inferred]

AudienceCode

AudienceRange

Audience

ReligiousText

EditionType [inferred]

Stylistic period
95 Language [inferred]

PrimaryContentType [inferred]

ProductContentType [inferred]

95

 The (highly indirect) inference here would be primarily from the language classification, which can include
some historical languages known to be linked to specific historical periods.

 Page 64 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO Classification
(example categories)

ONIX elements mapped
(rough equivalence or analogy)

Museum organisation structure [none – analogous book trade organisation structure could
only be inferred from other fields such as retailer subject
headings, publisher-assigned collections etc.]

No LIDO equivalent
(intellectual content)

96
PrimaryContentType

Language

ProductContentType

Illustrated

EditionType

Some of the most complex syntactic mappings were in this section, because, even though the basic structure
(ID, term) is shared by both schemas, ONIX often requires that a value from one list will specify another list to
be used for a related element’s content. These exceptional mappings are explained briefly in the table below.

ONIX source element Conditions / correlations

PrimaryContentType Used to set the Europeana media type by correlating the main
groupings of ONIX code list 81 to one of TEXT, IMAGE,
SOUND or VIDEO – and if no <PrimaryContentType> element
is found, set it to TEXT as a default for book products. The
mapping is repeated to give the specific PrimaryContentType
value as a separate lido:classification with no conditions.

Language (and subelements) Condition – the language must be that (or one of those) used
(according to the <LanguageRole> subelement) for the text
content of the product. Some useful information is lost here as
the <LanguageRole> element does not have an analogue in
the LIDO classification structure. Also, the various aspects of
the text’s “language” – language, country variant and script –
can be described here but in LIDO their conceptID and term are
linked only by their @label.

97

AudienceRange The ONIX composite <AudienceRange> uses both the order of
its subelements in the XML document, and codelist values to
specify the semantics of a sentence of the form FROM
EARLIEST-AGE TO LATEST-AGE. This has been mapped to a
lido:classification where the part of this sentence is denoted by
LIDO’s @label attribute. This could alternatively be done using
a lido:measurementSet since an age is simply a length of time.

Illustrated This mapping is the same simple one-to-one correspondence
described above, except even further simplified to only use the
lido:term with a value of “yes” or “no”. The @label attribute
indicates this is the answer to the question, “Illustrated?”, or “is
this product illustrated?”. It will be useful for product records
that do not contain further details of illustrations (see section
9.5.6).

96 The absence of any specific classifications for text content or other symbols does not indicate that LIDO
cannot express these. The language of transcribed “inscriptions” can be expressed using the xml:lang attribute,
for example. However, since LIDO was designed to describe found objects or (not primarily textual) artefacts, it
lacks both the most general and the most detailed expressions for classifying text and symbols.
97 Because, as noted above, the symbolic content of an object or work is somewhat secondary for LIDO, in
effect only one “language role” classification is expressed: the product’s primary language, since it applies to
the whole product.

 Page 65 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX source element Conditions / correlations

ReligiousText This is another binary flag to show that the product is
considered a religious text of some sort. It contains a condition
(the <ReligiousText> composite must exist) and maps a single
lido:term with value “religious text”.

ProductFormFeature Uses a large number of conditions based on the
<ProductFormFeatureType> subelement to select a code list
value mapping for the <ProductFormFeatureValue>
subelement which provides the LIDO <conceptID> and <term>.
Thus only those Product Form Feature Types which take code
list values are mapped as classifications; the others map to
descriptive notes (see below, section 9.5.5).

The two ONIX elements Illustrated and ReligiousText are “flags” that convey the simplest possible classification
type (one class, to which the product either does or does not belong). Ideally, a URI for the ONIX element itself
could be used here to identify membership of this class.

8.5.3 Identification – Title

LIDO’s titleWrap syntax only allows for one text string per “title”, with attributes as shown in the simplified
hierarchy and cardinality diagram below. This severely restricts what can be usefully mapped to the
lido:titleSet construction, especially as the LIDO specification explicitly stipulates “one title or object name and
its source information”, which seems to imply that a single, self-contained title per lido:titleSet is expected.

LIDO title structures (simplified hierarchy and cardinalities)

The LIDO specification does supply several useful attributes for the titleSet and appellationValue elements,
especially @sortorder and @pref but as shown above, they are only allowed on their respective elements, and
@pref is only really a subclass of @sortorder. There are effectively only two levels of detail (“granularity”) as
the TitleWrap is really a pure container element with no semantic aspects.

Compare this with the ONIX <TitleDetail> composite structure shown, again in UML, below (noting that not
shown is the abstract “title” entity which groups together the actual ONIX XML elements used for this
purpose):

 Page 66 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX 3.0.1 title structures (extract from full UML diagram)

Both top elements of this structure are repeatable, and the second contains a third level of detail, compared to
LIDO’s two levels. The <TitleDetail> contains the semantic qualifier <TitleType> which for this mapping must
take the value “distinctive title” i.e. the fixed, title proper of the product. The single or multiple <TitleElement>
subelements it contains can a sorting order number and a variety of typed structural text-bearing elements for
titles or specific parts of titles. The only way to represent these faithfully in the LIDO schema is to either
choose those title elements which are already single text strings, or concatenate several subelements of
<TitleElement> which are predefined to belong together as one string.

The table on the next page enumerates only the simplest possible combinations of ONIX title elements
according to the best practice document, and how they have been mapped in the LIDO titleSet. It would be
possible to construct algorithms to prefer certain combinations of title elements depending which varieties of
combinations are present, but there is no indication in the ONIX for Books specification or best practice guides
to indicate which are preferred. In any case, MINT does not yet allow such complex conditional statements
from the XSLT vocabulary.

Note also that only the very simplest titles and those only where they apply clearly and directly to the product
as available for retail, are mapped. No TitleDetails of the type “Undefined” are allowed since it is not clear if
they are found on the items in this product class or not, nor if they make up a whole title or only part. Of
course other types of title have interest and value for Linked Heritage and Europeana’s use case, but the
current state of the LIDO schema does not allow them to be represented fully enough for them to be usable
either for search or for presentation to end users. Alternative or translated titles could certainly be
represented in LIDO using descriptive notes, for example, but this would reduce their semantic precision and
also make them less useful for indexing.

File: D4-2_Specification-of-technologies-chosen.docx Page 67 of 326

LINKED HERITAGE
Deliverable D4.2

 ONIX: LIDO:

N
o

.

T
itle

E
le

m
e
n
t/

T
itle

E
le

m
e
n
tL

e
v
e
l

T
itle

E
le

m
e
n
t/

P
a
rtN

u
m

b
e
r

T
itle

E
le

m
e
n
t/

Y
e
a
rO

fA
n
n
u
a
l

T
itle

E
le

m
e
n
t/

T
itle

T
e
x
t

T
itle

E
le

m
e
n
t/

T
itle

P
re

fix

T
itle

E
le

m
e
n
t/

T
itle

W
ith

o
u
tP

re
fix

T
itle

E
le

m
e
n
t/

S
u
b
title

T
itle

S
ta

te
m

e
n
t

M
a
p
 e

x
is

tin
g
 e

le
m

e
n
ts

(n
o
t E

le
m

e
n
tL

e
v
e
l) to

s
im

p
le

 L
ID

O

title
S

e
t/a

p
p
e
lla

tio
n
V

a
lu

e
?

title
S

e
t

@
s
o
rto

rd
e
r

1 - - - - - - - Y Y 1

2 01 N N Y N N - N Y 1

3 01 N N N Y Y - - Y 1

4 01 N N - - - Y - Y 2

5 02 - - - - - - - N -

Far more combinations are possible in ONIX, but only the first four are possible within the LIDO specification. For all of the first four simplest options, the TitleElementLevel
has the value 01, signifying that the title applies directly to this product.

 Option 1. is the case where a <TitleStatement> summarises a complex title that cannot be easily constructed by concatenating other ONIX elements. The
<TitleStatement> is equivalent to one of the LIDO elements beginning “display” which offer a single text string as an alternative to displaying complex or technical
data to the end-user.

 Option 2. represents a single <TitleText> element containing the whole title.

 Option 3. shows the case where the <TitlePrefix> and <TitleWithoutPrefix> should be concatenated.

 In Option 4. there is a <Subtitle> and so this is the only mapping where LIDO’s @sortOrder is set to “2” indicating this titleSet should be displayed after any other.
Otherwise, again, the <Subtitle> in ONIX is effectively a single text string.

 All options from 5. onwards have parts taken from the collection and will require either or both of a more complex titleSet in LIDO, and business rules to decide
which parts to map in which order.

 Note that the following conditions apply in the XSLT mapping (more complex conditions could be used in future versions):

 Page 68 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX source
element

Value Description Title element
combination(s)

Notes

TitleElementLevel 01 Product All All titles mapped to LIDO must be “product level” titles as noted above.

TitleType 01 Distinctive title All All titles mapped to LIDO must be “distinctive titles” i.e. the title which appears on
the product, distinguishing it from other related books (e.g. other volumes of the
same book, other editions). It could be argued that a TitleType of 00 “Undefined”
might be acceptable, but this would allow more complex titles that do not fit LIDO’s
simple title data model.

TitleStatement [exists] n/a 1 If there is a TitleStatement, this is the first choice for the LIDO mapping since it is
one integral piece of text representing a “title”.

PartNumber

YearOfAnnual

[does
not
exist]

n/a 2, 3 This condition removes the chance of mapping part of a complex title with part
numbers or years.

TitlePrefix

TitleWithoutPrefix

[does
not
exist]

n/a 2 This condition removes the chance of mapping a TitleText element that has been
mistakenly combined with the use of TitlePrefix and TitleWithoutPrefix.

It would also be possible to concatenate collection-, subcollection- and product-level title elements to create an improvised title string for use in the LIDO appellationValue
element. One example used for practical ONIX for Books implementations used the following pattern:

Collection title* (number within collection*) – main title text , part number (year of annual) : subtitle

[* = only for prescribed bibliographic collections, not ascribed collections in ONIX 3.0]

 This has so far been ruled out because it would in practice create a new,local <TitleStatement> that is not used by any party in the supply chain, or would necessitate
adopting and implementing one of a number of possible title statement standards98, which would seem to be a task for the LIDO working group;

If a local <TitleStatement> were constructed, the XSLT for this option would be inefficient because MINT presently only allows construction of IF/THEN conditional
statements, which means that for every combination of the title elements in the pattern above would require a separate mapping to lido:appellationValue with a set of
conditions attached ruling out all the other options, to avoid creating partly empty lido:appellationValue elements with redundant punctuation.

98

 Such as ISBD, Area 1: http://www.ifla.org/en/publications/international-standard-bibliographic-description

http://www.ifla.org/en/publications/international-standard-bibliographic-description

File: D4-2_Specification-of-technologies-chosen.docx Page 69 of 326

LINKED HERITAGE
Deliverable D4.2

8.5.4 Identification – Inscriptions

Here the tension inherent in describing a product type using a schema designed for unique items is very clear.
It seems counterintuitive that the text of a printed book or ebook is an “inscription”. However, within the
definition of the LIDO specification we find : “A transcription or description of any distinguishing or identifying
physical lettering, annotations, texts, markings, or labels that are affixed, applied, stamped, written, inscribed,
or attached to the object / work, excluding any mark or text inherent in the materials of which it is made.”
Since the text of a book is not “inherent in the materials of which [the book] is made” it seems clear that we
must include “text” printed (“stamped”) on the paper pages or “attached” to the ebook file.

The context or use case here is “distinguishing or identifying” a product class (N.B. not one “copy of a book”
from another since we are exclusively concerned with F3 Manifestation Product Type, not F5 Item). In normal
conditions, commercial products should be completely distinguishable by their published identifier (e.g. ISBN)
and in the worst case, their minimum referent data (title, contributors, publisher, publication date and place,
etc.). However, since we are viewing the commercial product “as if” it were a heritage object, these
conventions cannot be taken for granted (not all of these data will be mandatory in ONIX data either) and in
any case, for FRBRoo, the F24 Publication Expression is equally important in identifying the product.

The relevant source element is “ONIXMessage/Product/CollateralDetail/TextContent/Text” and code list 153
categorises the types of content item found there, the relevant codes to select for lido:inscriptions being as
follows:

Value Description Notes

04 Table of contents Used for a table of contents sent as a single text field, which may or
may not carry structure expressed as XHTML.

05 Flap / cover copy Descriptive blurb taken from the back cover and/or flaps.
99

14 Excerpt A short excerpt from the work.

Note that unlike for Descriptive text (section 8.5.5) and third-party texts (section 8.5.8) no conditions as to
audience were necessary here as this is text that appears on the product itself. This is a code list where the
optimised nature of the ONIX message becomes clear (very different types of creative content are grouped by
their textual nature) and where LIDO’s generality becomes useful in coherently aggregating very different
types of material.

8.5.5 Identification – Description

The objectDescriptionWrap in LIDO holds textual descriptive notes about the object or work described by the
LIDO record, together with optional identifiers and sources for the texts. The LIDO specification suggests that
these should be distinct from the object itself (in opposition to lido:inscriptionsWrap) as they should be “a
relatively brief essay-like text that describes the entity”. In the case of books, this definition could well overlap
with that for inscription – in particular, the flap / cover copy identified in the above section 9.5.4. – but since
the clear distinction of appearing on the product, or only in the ONIX message is provided, and maps so well to
the inscription/description distinction in LIDO, it was decided to use the following criteria for this mapping
area:

 The text is in the TextContent composite (as in section 9.5.4.) but does not explicitly appear on the
product or in a third-party publication (see section 9.5.8), or

 The text is provided in an ONIX element already described in the ONIX specification as “note”,
“statement” or “description”.

99 Note that this may change without changing e.g. the ISBN of a book product – in cases such as the death of
an author or a prize awarded to the book. This does not change the product from the publisher’s point of view
but it does change the product type from a heritage point of view (see section 17.1 on “publisher expression”)
so technically a heritage aggregator should assign a new identifier to this “version” of the product and keep
both records.

 Page 70 of 326

LINKED HERITAGE
Deliverable D4.2

Note that there is no presumption involved in the LIDO expression that the description text originates from the
publisher; if the onix:SourceTitle element is not provided, there will simply be no lido:sourceDescriptiveNote
element and thus no statement of the source.

Here are the six mappings together with their conditions or related code lists as for the lido:classification
mappings in section 8.5.2.

 Page 71 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX source element Conditions / correlations

IllustrationsNote Direct mapping of onix:IllustrationsNote to
lido:descriptiveNoteValue – on condition that there is no
numerical description of illustrations in the ONIX message (in
that case, the IllustrationsNote would be mapped within the
LIDO measurements structure described in section 9.5.6.
below). The XPATH that must not occur in the message is
“ONIXMessage/Product/DescriptiveDetail/
NumberOfIllustrations”

ProductFormDescription Direct mapping to lido:descriptiveNoteValue with no conditions.
This is simple textual description of the product’s medium and
format.

ProductFormFeatureDescription Direct mapping to lido:descriptiveNoteValue – but with a
@lido:type determined by the related
<ProductFormFeatureType> element and values mapped from
code list 79, which is also used to select only
<ProductFormFeatureDescription> elements from composites
with codes in list 79 that specify a text description).

EditionStatement Direct mapping to lido:descriptiveNoteValue with no conditions.
This is simple textual description of the product’s edition. The
rest of the edition elements in ONIX Group P.9 are mapped
elsewhere (e.g. <EditionType> is in lido:classification).

AncillaryContentDescription As with <IllustrationsNote> above. The condition for inclusion
as a lido:descriptiveNoteValue is that ONIXMessage/Product/
DescriptiveDetail/AncillaryContent/Number does not occur in
the message.

TextContent Complex conditional mapping described below.

The mapping “onix:TextContent/onix:Text” to lido:descriptiveNoteValue depends on the fulfilment of the
three conditions below (note that one depends on an attribute of the <Text> element itself):

Subelement of
<TextContent>

Allowed
values

Descriptions of
allowed values

Comments

TextType 02

03

10

11

12

13

annotation

Description

Promotional headline

Feature

Biographical note

Publisher’s notice

The allowed text types are all
those either explicitly called a
“description” in code list 153 or
those types left after excluding
“inscriptions” (see section 9.5.4) or
clearly linked to a third-party
publication event (see section
9.5.8)

ContentAudience 00

03

06

Unrestricted

End-customers

Students

These three audience categories
(from code list 154) are taken to
mean “effectively unrestricted”.

Text/@TextFormat 00

06

07

ASCII text

Default text format

Basic ASCII text

The text content must be plain text
to allow reuse through LIDO.

100

100

 Although this ONIX element often contains text marked up in a subset of XHTML (when
@onix:textformat=”05”) this cannot be aggregated in non-display parts of LIDO; nor is it accepted by the

 Page 72 of 326

LINKED HERITAGE
Deliverable D4.2

Once these conditions have been fulfilled, there is a nearly perfect semantic correspondence between the
relevant ONIX elements and their LIDO targets as shown below:

ONIX LIDO Comments

TextContent/TextType objectDescriptionSet@type The text type had to be mapped
here as there is no @type
attribute on the
lido:descriptiveNoteValue
element, which might be more a
specific and thus appropriate
place.

TextContent/Text descriptiveNoteValue Perfect correspondence – the
actual text of the description.

TextContent/SourceTitle sourceDescriptiveNote Perfect correspondence – the
title of the published source of
the text.

8.5.6 Identification – Measurements

The LIDO schema here specifies that measurements must be numerical, expressed in “whole numbers or
decimal fractions”. Several parts of the ONIX product information can be expressed in this way, including the
<Measure> composite used to describe the overall dimensions of printed books and other physical products;
the <Extent> composite which describes the length of the product’s content101 in the traditional mode of page
count, but also duration (for audiobooks), two composites that provide a count of content items such as
pictures or diagrams, and a scale in case of cartographic material. All of these map clearly to the
lido:MeasurementsWrap in some way, although ONIX Measure corresponds more closely to the dimensions of
the product “as artefact”, with <Extent> giving an idea of the size of the symbolic content.

Less obvious is the onix:EditionNumber which refers purely to the process of creating, selecting and otherwise
“editing” the intellectual content of the product for final publication. Since this in any case can be adequately
represented by an integer number and a type of “count” for the granular LIDO structure (made up of type, unit
and value) this element was mapped here too.102 The related onix:EditionVersion which can contain
alphanumeric text, is mapped here in the lido:displayObjectMeasurements element, with a label distinguishing
it as a “version” number. Each of these “areas” or explicit composites in ONIX generates a new
lido:objectMeasurementsSet so that they are kept separate.

Linked Heritage and Europeana aggregations. It would have to be stripped down to plain text by pre-
processing; see section 15.2.5.
101 “Extent” in ONIX covers 1) page count; 2) duration; 3) file size. Compare with the library cataloguing
definition given at: http://www.abc-clio.com/ODLIS/odlis_e.aspx#extentofitem, “the number of physical units
comprising the item (example: 356 p. or 13 v.), the specific material designation, and any other details of
extent, such as playing time in the case of sound recordings, motion pictures, videorecordings, and DVDs.”
102 Although “edition” could be treated as part of a title because it is normally displayed with the title on
products, its nature as a record of the creation and publication processes behind the product makes it more
unique, and in any case, ONIX supplies this data independently of titles, possibly since edition details may not
always be given in a product’s title, and indeed a title may change between editions; see: http://www.abc-
clio.com/ODLIS/odlis_e.aspx#edition. Other edition-related elements such as onix:EditionType are mapped
differently when not numerical – following the model of illustration and ancilary content numbers and
descriptions.

http://www.abc-clio.com/ODLIS/odlis_e.aspx#extentofitem
http://www.abc-clio.com/ODLIS/odlis_e.aspx#edition
http://www.abc-clio.com/ODLIS/odlis_e.aspx#edition

 Page 73 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX LIDO Value
mappings

Comments

AncillaryContent/Number

…AncillaryContentDescription

…AncillaryContentType

measurementValue

displayObjectMeasurements

measurementType

n/a

n/a

Code list 25

The LIDO container element
objectMeasurementsSet (with
its subelements) is generated
on each occurrence of the
onix:Number within
AncillaryContent so it should
only be mapped when
numerical description is
supplied.

NumberOfIllustrations

IllustrationsNote

measurementValue

displayObjectMeasurements

measurementType=”Number of
illustrations”

 As for onix:AncillaryContent
above, the container
lido:objectMeasurementsSet is
only generated when
NumberOfIllustrations occurs
in the source.

MapScale measurementValue

measurementType=”Map scale”

measurementUnit=”1”

 Also mapped to display field
with explanatory
concatenations.

Measurement

MeasureType

MeasureUnitCode

measurementValue

measurementType

measurementUnit

n/a

Code list 48

Code list 50

Perfect correspondence.

ExtentValue

ExtentType

ExtentUnit

measurementValue

measurementType

measurementUnit

n/a

Code list 23

Code list 24

Perfect correspondence. Note
that when extents are provided
in Roman numerals, this is
mapped to
displayObjectMeasurements
as the LIDO schema does
specify how numbers should
be encoded.

EditionNumber measurementValue

measurementType=”Edition number”

measurementUnit=”1”

n/a

n/a

n/a

EditionVersionNumber is
mapped to
displayObjectMeasurements
as it can contain
miscellaneous text as well as
numbers.

Note that LIDO lacks two aspects of specification that are present in ONIX:

1. Pre-defined list of units to use with measurements;
2. Specification of numeral encoding to use with measurements (e.g. Arabic or Roman numerals).

This makes the mapping no less correct but may make aggregated ONIX data less useful in LIDO since it will be
difficult to ensure similar measurements appear collated in search results; this will be no less true of heritage
data, which may use different units and numeral encodings depending on its source.

8.5.7 Identification – Event (lido:Creation)

Bibliographic records generally hold very limited information directly about the processes involved in creating
their objects’ intellectual content. Mapping ONIX to LIDO has shown that, at least for commercial product

 Page 74 of 326

LINKED HERITAGE
Deliverable D4.2

records, this aspect of description is confined to describing the actors in the role of “contributor” in this
creation “event”.

Since the lido:event can refer to an extended period of time during which the process takes place, here the
definition is taken as broadly as possible to include all types of “contribution”. This highlights the need to
acknowledge and reference all of the relevant rightholders, whether for commercial, legal or moral reasons; in
contrast to the heritage viewpoint, the various “sub-events” leading up to the fixation of a Manifestation
Singleton are not so relevant, as only the final product (normally) appears in a product description.

File: D4-2_Specification-of-technologies-chosen.docx Page 75 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX LIDO Value mappings Conditions Comments

 eventType/term=”Creation” n/a No ONIX element
corresponds to this
lido:event – it is the
implicit context for the
Contributor composite.

Contributor

…/sequenceNumber

eventActor

…@sortorder

 Each onix:Contributor
corresponds to a new
eventActor within the
same Creation event.

ProfessionalAffiliation/
ProfessionalPosition

…Affiliation

displayActorInRole n/a Concatenation of both
subelements to provide
“brief biographical
information, and roles…
of the named actor”. LIDO
label attribute to
distinguish from
description below.

ContributorDescription displayActorInRole n/a Simple mapping of
descriptive note for actor.
Attribute @label to
distinguish from above.

NameIdentifer/IDValue

NameIdentifer/NameIDType

actorID

…@pref=preferred

…@type

n/a

n/a

Code list 44

 Simple mapping for an
identifier for this actor’s
primary name to the LIDO
actor identifier (see fuller
discussion of names and
actors below this table).

Alternativename/
NameIdentifer/IDValue

AlternativeName/
NameIdentifer/NameIDType

actorID

…@pref=alternate

…@type

n/a

n/a

Code list 44

 Simple mapping for ONIX
alternative name ID. See
discussion below.

 Page 76 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX LIDO Value mappings Conditions Comments

TitlesBeforeNames etc.

nameActorSet

appellationValue

…@label=”Person name part 1:
titles before names” etc.

@type=”Primary name”

n/a

n/a

n/a

n/a

 The mapping for the
ONIX Contributor’s
primary name. The
primacy of this name set
is implicit in the ONIX
message so there is no
structural mapping to
lido:nameActorSet.

Alternativename

Alternativename/ TitlesBeforeNames
etc.

nameActorSet

appellationValue

…@label=”Person name part 1:
titles before names” etc.

@type=”Alternative name”

n/a

n/a

n/a

n/a

 As for the primary name
above, but note here the
structural mapping to
lido:nameActorSet to
distinguish alternative
names from the primary
name and from each
other.

ContributorPlace

…/RegionCode

…/ContributorPlaceRelator

…/RegionCode

…/ContributorPlaceRelator

…/CountryCode

…/ContributorPlaceRelator

…/CountryCode

…/ContributorPlaceRelator

nationalityActor

…conceptID

…@type

…term

…@type

…conceptID

…@type

…term

…@type

n/a

n/a

Code list 151

Code list 49

Code list 151

n/a

Code list 151

Code list 91

Code list 151

 Simple “classification”-
styled pair (see section
9.5.2). The term
“nationality” in LIDO is
vague, so the more
specific ONIX “contributor
place” was mapped here
with a @type attribute
preserving the specific
classes of place
relationship (e.g. born in,
died in, worked in…).

 Page 77 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX LIDO Value mappings Conditions Comments

ContributorDate

ContributorDate

vitalDatesActor

earliestDate

…@label=”Date of birth”

latestDate

…@label=”Date of death”

n/a

ContributorDateRole=”50”

ContributorDateRole=”51”

LIDO contains only
“earliest” and “latest”
dates, so the conditions
here restrict the more
expressive ONIX date
options to “birth” and
“death” respectively. Note
the lack of a structural
mapping since there is no
ONIX container element
for multiple
onix:ContributorDate sets.

ContributorRole roleActor/conceptID

roleActor/term

n/a

Code list 17

 This mapping acts exactly
like the simple
lido:classification
mappings in section 9.5.2.
and the actor role code
list is of course a “local”
ID type.

File: D4-2_Specification-of-technologies-chosen.docx Page 78 of 326

LINKED HERITAGE
Deliverable D4.2

At this point it is useful to compare the structure of names and their relation to the actor entities they are
attached to in the data models of ONIX and LIDO. This is not simple, because, as noted in the mapping
descriptions above, several parts of the full semantic chains for many elements in both schemas are implicit (in
ONIX this is not unusual since it is highly optimised for use in the book industry domain, but for LIDO as a
general aggregation schema this could pose problems).

LIDO actor name structures (simplified hierarchy and cardinalities)

The first, simplified schema structure diagram here shows the part of the LIDO <actor> structure that contains
names and actor identifiers. The key features to note are that

 The identifier is attached to the lido:actor entity itself, rather than to a name for that actor;

 There are two levels of detail for each “name”, and the attributes are shared exclusively by the
nameActorSet container and the appellationValue data holder. It is not clear from the LIDO
specification why each attribute is reserved to its respective level of description.

This simple structure contrasts with the ONIX names structure pictured in the UML diagram below:

The model of names in ONIX comes from the experience of assigning identifiers in the commercial world,
where one actual person may use several publically available names, perhaps different names in different

 Page 79 of 326

LINKED HERITAGE
Deliverable D4.2

contexts, and, again in different specific cases, each name maybe be presented in various ways. This leads to at
least three discrete levels of identification:

Description
level

Explanation Identification Description

Person The actual (“natural”)
person.

Commercial view:;
party to an
agreement.

Heritage view:
attribution and
collocation of
works; rightholder.

Commercial view: maybe be
completely private, restricted
information; possibly some
contact information shared to
allow licensing of work.

Heritage view: all information of
interest publically shared to
enable research and add
cultural value.

Persona A public identity for the
person (or occasionally,
a group of people).

Contributors are
identified at this
level.

Commercial view: this is the
normal level of identification,
with private details linked from
the name ID in a separate,
restricted database.

103

Presentation A textual variant of the
name (for example, use
of initials or full names;
inclusion of name
elements; element
order).

Presentations of
names are not
currently identified
in either sector.

Usually given as raw text value
alternatives for a single name
identifier.

For this reason, unique identifiers in ONIX are assigned at the level of the name (“Presentation”), rather than
of the actor. This allows alternative presentations to be supplied and linked via “Persona” identifiers such as
ISNI, and allows two “Personae” to be linked by supplying identifiers in different name composites of different
types104 e.g. “real name” and “pseudonym”. Furthermore, bearing in mind the complexity of alternate
presentations of names, and the many valid use cases for each, ONIX allows for 8-part structured names,
where each part bears a specific relation to the central “key names” used as sorting elements. These relations
are based on analysis of actual usage by ONIX data providers, are selected “functionally” to cover
requirements for search, sort and display, rather than to express cultural or genealogical construction, and are
sufficiently generalised105 to cover name construction conventions in the most widespread cultures and
societies. The elements of the name may be concatenated by the recipient of the ONIX message in different
ways depending on the use case: for sorting, indexing or display.

The placement of attributes in the ONIX name again reflects this usage: because a unique identifier can be
given for each name, rather than an actual actor/party, the recipient can group together names using a
bridging ID like ISNI106 if they have appropriate access to the data. The order of presentation of contributors in
attribution, essential, for example, in academic research papers and core text books, is decided at the
contributor rather than name level, and this is reflected in ONIX.

Only two levels of “priority” of names are recognised in ONIX; the primary name (as it appears on the product)
and any alternate names; here again LIDO lacks flexibility through assigning the @sortorder attribute to the
name element rather than the binary @pref.

103 See D4.1 section 6.2.1 on the ISNI, designed as a “bridging” identifier between other databases, some of
which will probably remain restricted.
104 See ONIX code list 18, “Person / organization name type”.
105 For example, their definitions only use terms like “name”, “suffix”, “prefix”, “letters” and “title”;
specification for use with family, religious or cultural associations, honorifics, linguistic particles, literary or
professional status and so on can be defined through examples in the specification and best practice
documents, and local guidelines issued by national or language-specific user groups.
106

 See ISNI homepage for more information: http://www.isni.org/

http://www.isni.org/

 Page 80 of 326

LINKED HERITAGE
Deliverable D4.2

Therefore only a simple mapping of names from ONIX to LIDO was possible, and even this represents a
compromise using the broadest possible interpretation of LIDO’s specification: “titles, identifying phrases, or
names” (lido:appellationValue) is taken to include also elements of names so that each part of the ONIX
structured name set could be mapped to a separate lido:appellationValue with its own @label containing its
element name (all start with “Person name part #”, making for easy reconstruction by the LIDO data user). The
mapping of the name identifier to a lido:actorID also therefore represents a compromise, although this is really
just an ambiguity in LIDO’s data model due to its different focus.

Actor roles were mapped simply to the equivalent part of the LIDO entity. It is worth noting that although this
mapping is satisfactory, extra semantic richness could be available if a future more detailed mapping (perhaps
to an enhanced, revised LIDO) took into account the ONIX <ContentDetail> composite, which identifies and
describes text items within a product’s content, including their contributors (for example, the case of a book
whose chapters each have different authors). Since many of the ONIX controlled values for contributor roles
refer to the discrete textual item producted by the contributor (e.g. preface, prologue, summary, afterword,
notes), and if these contributors could be linked to specifc texts, it might be valuable to consider reflecting the
granularity of roles and content items, especially for digital publications.

8.5.8 Identification – Event (from onix:TextContent)

As noted in sections 9.5.4 and 9.5.5, the contents of the onix:TextContent composite are shared between the
Inscriptions, Description and Event sections of LIDO. This part of the mapping models the remaining classes of
text content as a publication event by a third party (i.e. not the book’s creators or publishers) including reviews
or endorsements of the product. The allowed classes are enumerated below:

Subelement of
<TextContent>

Allowed
values

Descriptions of
allowed values

Comments

TextType 06

07

08

09

Review quote

Review: previous
edition

Review: previous work

Endorsement

Note that although types 07
and 08 relate to other products,
they were still considered
relevant to the product of
interest, as relating indirectly to
the current work or perhaps its
creator(s).

ContentAudience 00

03

06

Unrestricted

End-customers

Students

These three audience
categories (from code list 154)
are taken to mean “effectively
unrestricted”.

Text@TextFormat 00

06

07

ASCII text

Default text format

Basic ASCII text

The text content must be plain
text to allow reuse through
LIDO.

Unlike for Inscriptions and Description, this part of onix:TextContent can be modelled as an event as other
aspects of the third-party publication event form part of the citation used as “credentials” to back up the text
content.

 Page 81 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX LIDO Value
mappings

Comments

TextContent eventSet n/a For the conditions of mapping a TextContent
composite here, see above. Each piece of
content represents a separate third-party
publication event.

 eventType n/a The event type was set to “non-specified”
although in principle it would be clearer to use
eventType=”Publication” and a
lido:roleInEvent=”Subject”, if a vocabulary
existed for that use.

TextSourceCorporate

TextSourceCorporate

eventActor

…appellationValue

n/a

n/a

Similarly to TextAuthor below, this is a simple
mapping to one part of the eventActor entity in
order to make explicit “name of author of text
produced in this event”. As above, however,
no vocabulary exists to specify the roles
involved.

TextAuthor

TextAuthor

eventActor

…appellationValue

n/a

n/a

As explained above but with a single person
as the author.

ContentDate/Date earliestDate

latestDate

n/a

n/a

Condition: ContentDateRole must equal 01,
signifying date of publication of this text.

Text

TextSourceTitle

eventDescriptionSet

…descriptiveNoteValue

…sourceDescriptiveNote

n/a

n/a

The actual text of the publication and the title
of its source. The text is only “a description of
the event” in a representative sense.

In summary, this mapping demonstrates the difficulty of creating explicit event entities from implicit events,
even when an event is clearly discernible from key aspects of events (dates, actors, products of the event – the
text itself). ONIX does not distinguish roles for the actors involved, and LIDO does not (yet) provide
vocabularies to designate the object of interest as an input of an event.

8.5.9 Identification – Event (from onix:CitedContent)

The CitedContent mapping is substantially the same as that for TextContent above, with the exception of
lido:thingPresent which replaces the eventDescriptionSet noted above. This is because the URL of the
CitedContent, which is the essential part of this ONIX composite, and its related descriptions, clearly fit better
in the lido:object model.

ONIX LIDO Value
mappings

Comments

 thingPresent/object n/a No more than one piece of text should appear in a
CitedContent composite so there is no need for a
structural mapping.

ResourceLink objectWebResource The Web link element is missing from eventDescriptionSet
so this is the only part of lido:event that can take ONIX
cited content links.

CitedContentType objectNote This and all other mappings below are simple descriptive
note mappings, where the @label of the object note
denotes the type of description.

SourceType objectNote

 Page 82 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX LIDO Value
mappings

Comments

SourceTitle objectNote

PositionOnList objectNote

ListName objectNote

CitationNote objectNote

As a third-party publication, this event does not differ substantially from the one for TextContent. It
demonstrates some of the differences in describing intellectual content in ONIX and LIDO, especially for Web
documents. As with the TextContent publication event, very many enhancements could be imagined but their
implementation would depend on a clear use case for data creators.

8.5.10 Identification – Event (from onix:Prize)

The mapping for onix:Prize is an example of a direct semantic correspondence between two schemas where
event modeling is followed, as the information conveyed is precisely the relationship of this product to the
event of awarding a prize. This event uses most of the core fields of the lido:event structure. It should be noted
that, even though, as with the previous two events documented here, the event type is “non-specified”, an
award / competition result announcement could conceivably be modelled was a type of “publication” related
to the product it is “about”.

ONIX LIDO Value
mappings

Comments

PrizeCode

PrizeCode

roleInEvent

conceptID

term

Code list 41

Even though a passive role, the position
awarded represents the product’s “role”
in the award event (as opposed to the
whole competition, where it was an
“entrant”).

This is a simple classification mapping.

PrizeJury eventActor/displayActorInRole n/a A simple mapping of a description of the
prize awarding body.

PrizeYear eventDate/earliestDate etc. n/a Simple mapping of the year of the award
to display, earliest and latest date.

PrizeCountry place/placeID

place/placeNameSet/appellationValue

Code list 91

The ISO 3166-1 codes are used here as
placeID and to map to country names
from the code list.

Because the prize information is already event data, it shows a maximum relational clarity, despite its lack of
granularity (owing to its limited importance in the ONIX message). It demonstrates how effectively ONIX data
can be mapped into LIDO structures when the semantics are fully explicit.

8.5.11 Identification – Event (lido:Publication)

Together with the Creation event, the Publication event is the main information carrier for a product, which is
itself a “publication” as well as a “creation” (cf. FRBRoo’s Manifestation Singleton and Publisher Expression
types). This part of the ONIX message fits reasonably well within the lido:event framework and yields similar
characteristics to the Creation event in its focus on the central Actor information, but adds Place and Date as
well since Publication (although the result of a process) can have at least a nominal “point-in-time” date.

File: D4-2_Specification-of-technologies-chosen.docx Page 83 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX LIDO Value mappings Conditions Comments

 eventType/term=”Publication” n/a The ONIX element <PublishingDetail>
corresponds to this lido:event but since
it is non-repeating there is no need for a
structural mapping.

Publisher

PublisherIdentifier/IDValue

PublisherIdentifier/
PublisherIDType

PublisherName

PublishingRole

eventActor

actorID

…@type

actorNameSet/appellationValue

roleActor/term

Code list 44

Code list 45

PublishingRole=”01” OR

PublishingRole=”02”

Identification details of a publisher or co-
publisher (respectively) including name,
published unique ID and role.

Imprint

ImprintIdentifier/IDValue

ImprintIdentifier/ImprintIDType

ImprintName

eventActor

actorID

…@type

actorNameSet/appellationValue

Code list 44

 The imprint is simply a brand name
under which a publisher releases some
of their books. Unfortunately when there
are multiple publishers and brands in
the same message, there is no clear
way to correlate an imprint with a
publisher unless IDs are provided for
both, so they are mapped here as
distinct entities.

PublishingDate/Date

PublishingDate/Date

eventDate/earliestDate

eventDate/latestDate

n/a

n/a

PublishingDateRole=”01”

PublishingDateRole=”01”

The date must be of type “nominal
publication date” as all other types are
only relevant to supply chain partners.

CountryOfPublication

CountryOfPublication

eventPlace

…placeID

placeNameSet/appellationValue

Code list 91

 The place ID and name are mapped
from the ISO 3166-1 code list just as for
PrizeCountry above (section 9.5.10).

CityOfPublication eventPlace/displayPlace The ONIX city element only contains a
name as text and so is mapped to the
display element.

File: D4-2_Specification-of-technologies-chosen.docx Page 84 of 326

LINKED HERITAGE
Deliverable D4.2

8.5.12 Identification – Relation (lido:subjectActor)

The mapping of lido:subjectActor works exactly as the contributor name mapping in section 9.5.7. Therefore the details are not repeated here. The same eight-part ONIX name
structure is used in ONIX, and each part is mapped to a single lido:appellationValue in the lido:subjectActor entity.

8.5.13 Identification – Relation (lido:subjectConcept)

A separate lido:subjectSet container is generated for each onix:Subject composite. The lido:subjectConcept contains the usual pairing of conceptID and term found in
lido:classification (section 9.5.2) and other controlled vocabulary fields such as role codes. The ONIX concept scheme composite can therefore be expressed almost perfectly,
except that the scheme version has no dedicated place. Hence a compromise is reached here by concatenating the scheme version number with the classification scheme name.

ONIX LIDO Value mappings Conditions Comments

Subject subjectSet

@sortorder=”1”

n/a

onix:MainSubject exists

SubjectCode

SubjectSchemeIdentifier

SubjectSchemeIdentifier

SubjectSchemeVersion

SubjectHeadingText

…@language

subjectConcept/subjectID

…@type

…@label

…@label

subjectConcept/term

…@xml:lang

n/a

Code list 27

Code list 27

 The subject scheme name is
mapped from the code list, and
concatenated with its version
number for the label.

8.5.14 Identification – Relation (onix:Collection)

This part, and the next three, map ONIX composites that describe related LIDO “works” of some kind – two of these, Collection107 and ProductPart, are not explicitly “related
products” in ONIX – though they can represent abstract sets of products. The other two, Product and Work, have explicit terms defining their relationship to the product of
interest.

107 ONIX 3.0.1 can describe collections of Products using the dedicated <Collection> composite, or indirectly through the <TitleElementLevel> in a <TitleElement> composite,
which can indicate a part of a title is inherited from the collection level. Indirect collection description has been omitted from this LIDO mapping, partly for reasons of

 Page 85 of 326

LINKED HERITAGE
Deliverable D4.2

Collections in ONIX (typically called “sets” or “series”) are another step of abstraction from product types; they are simply a set of related products, with the relation established
by a publisher’s decision or otherwise

108
. Since this mapping proceeds on the assumption that conceptual objects like product types can be mapped to LIDO, there is no reason

why these equally abstract objects should not also be. Collections of products are analogous to collections of unique items, which are counted by the LIDO specification as
“related objects”.

ONIX LIDO Value
mappings

Conditions Comments

TitleStatement displayObject n/a Simple mapping of the single-string title to a display field.

CollectionIdentifier/IDValue

CollectionIdentifier/
CollectionIdentifierType

objectID

…@type

Code list 5

 Simple mapping of the identifier.

TitlePrefix

TitleWithoutPrefix

objectNote Simple note field concatenation of title elements.

ContributorStatement objectNote Simple mapping of the contributor note to the notes field.

CollectionType objectNote Code list 148 The collection type refers to the assignment of products to this set by publishers
or others.

8.5.15 Identification – Relation (onix:ProductPart)

In contrast to the Collection composite describing collections this product is part of, the onix:ProductPart composite is used to describe parts of this product. Since the mapping
is almost identical in form to that in the Collection mapping above, the details are omitted here. The main differences are that no title is provided for the ProductPart, and
instead, all of the ProductForm and related elements (see section 9.5.2) are applied to the product part, as well as the <CountryOfManufacture> but these are all mapped to
simple descriptive notes, using the same conditions and value mappings as for the lido:classification terms as noted in section 9.5.2.

complexity and limited time, and partly because only a collection title is provided in the ONIX <TitleDetail> so it will produce an incomplete, and mainly implied entity in LIDO,
whereas the dedicated <Collection> can provide a full LIDO entity’s content.
108 ONIX Collections may or may not be products available for retail.

 Page 86 of 326

LINKED HERITAGE
Deliverable D4.2

8.5.16 Identification – Relation (onixRelatedProduct)

As for the ProductPart mapping described above, the RelatedProduct composite holds an ID, ProductForm and ProductFormDetail elements, mapped as in 8.5.15. However, it
also holds the ProductRelationCode mapped to lido:relatedWorkRelType conceptID and term which is an example of another exact semantic correspondence (though
unfortunately there is a lack of structural mapping in MINT for the sets of types). The product relations defined in ONIX code list 51 contains an extremely wide range of
relations between products in different forms, and collections that contain them. These are the relator types that can deliver useful semantics for linked data representations of
products and the abstract works they manifest.

8.5.17 Identification – Relation (onix:RelatedWork)

The mapping for onix:RelatedWork is even simpler than for RelatedProduct. Only an identifier can be provided (mapped to the LIDO objectID) since there are no ONIX for Books
metadata describing abstract creative works directly (although ONIX for ISTC registration does). Of course creative works expressed and fixed as products can be identified by
some of the properties of the derived products, so, for example, one of the options for a work identifier is the ID of a product it is expressed and fixed in. The relations that can
be predicated of works in ONIX are only five, but again, they have immense potential for creating reliable semantic links between data.

8.6 ELEMENT MAPPINGS – LIDO ADMINISTRATIVE

8.6.1 Rights Work

The LIDO RightsWorkSet contains a highly generalised statement of intellectual property rights in the object of interest. This allows the full onix:CopyrightStatement to be
mapped to LIDO, with precise alignment of the entities described.

ONIX LIDO Value
mappings

Conditions Comments

CopyrightStatement rightsWorkSet n/a/ Structural mapping of ONIX rightsholder statement to
equivalent LIDO statement.

 rightsType/term=”Copyright” n/a The right type is explicit in the context of the ONIX composite
but has to be specified in LIDO.

 Page 87 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX LIDO Value
mappings

Conditions Comments

CopyrightYear

…@dateformat

CopyrightYear

…@dateformat

rightsDate/earliestDate

…@type

rightsDate/latestDate

…@type

n/a

Code list 55

n/a

Code list 55

CopyrightOwner rightsHolder Structural mapping to create distinct LIDO entities matching
multiple ONIX entities.

CopyrightOwnerIdentifier/
IDValue

rightsHolder/legalBodyID

 Identifier types are taken from code list 44, so these are
typically name or B2B identifiers.

CorporateName

PersonName

legalBodyName/
appellationValue

legalBodyName/
appellationValue

n/a Separate appellationValues generated for either type of name.

It is important to note that this LIDO mapping is capable of expressing the entire ONIX copyright information section, and to compare this with the complexity of the ONIX sales
rights section (not mapped, see Appendix 4, section 20.4 for details). During the mapping exercise, it became apparent that there is no satisfactory mapping of the ONIX sales
rights and markets composites to LIDO due to their combination of elements from actor, event and rights entities.

Sales rights, like licensing terms in PLUS photo metadata, are not declarations of rights held by an existing rightsholder, but rather of rights offered or granted to recipients of
the data. This is explicit in schemas like ONIX for Books, but is not envisaged by LIDO and hence cannot yet be expressed.

8.6.2 Record

Both ONIX and LIDO records contain significant amounts of reflexive information about the metadata record itself. However, the ONIX elements corresponding to LIDO’s record
information are spread across various parts of the ONIX record, illustrating several differences in how the records are created and used. One main difference is that ONIX
messages will typically contain multiple product records, and, if the ONIX message originates from a data aggregator, these records will probably originate for one or more
sources distinct from the aggregator (in fact, individual data elements may have separate sources, but this is discussed later, in section12.2). This mapping area also contains
another Europeana-specific field – rights in the data record – that will need to be addressed in D4.3 because of its central relevance to the licensing framework for data
contributors. In addition, this area contains the link to access product retail options, another factor in the commercial case to be outlined in D4.3.

ONIX LIDO Conditions Comments

 Page 88 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX LIDO Conditions Comments

Product/RecordReference recordID

…@type=“local”

 The ONIX message format can contain multiple product records,
each with a unique ID (not a HTTP URI). This is used to generate
the LIDO record ID.

ProductComposition

ProductComposition

recordType/conceptID

recordType/term

 LIDO requires a “record type” specifying the unit of description –
single item, collection, or group. ONIX contains this information but
relates it to the product, rather than the record. This is a minor
distinction, since the effect is the same, resulting in a strong
semantic correspondence. Note that onix:ProductComposition only
denotes singleness or multiplicity – not a specific number of items,
which can only be inferred e.g. from the onixProductPart composite.

RecordSourceIdentifier/
IDType

RecordSourceName

recordSource

legalBodyID

legalBodyName/appellationValue

 There is no structural mapping because a record as such can only
have one source in ONIX (although individual elements can have an
additional source attribution – see sections 15.2.5 and 15.2.7).

This LIDO structure is duplicated for mapping to ESE.

 recordRights (europeana)

rightsType/term=”CC0”

 This field is automatically completed in MINT.

Header/SentDateTime

RecordSourceIdentifier/
IDValue

RecordSourceName

recordRights

rightsDate/latestDate

rightsHolder/
legalBodyID

legalBodyname/
appellationValue

 Any rights (e.g. copyright) held in the data record by its creator(s).
Only the latest date (when the record was transmitted) is known
since the date it was created is not provided.

Header/SentDateTime

Header/Sender/
SenderIdentifier/IDValue

Header/Sender/
SenderName

recordRights

rightsDate/latestDate

rightsHolder/
legalBodyID

legalBodyname/
appellationValue

 The same as above, but for the rights (e.g. database right) of the
data sender, perhaps an aggregator of records from many sources.

 Page 89 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX LIDO Conditions Comments

Supplier/Website

Supplier/Website/
WebsiteLink

recordInfoSet

recordInfoSet/recordInfoLink

WebsiteRole=”40” The LIDO target specifies a Website for a catalogue entry/data
sheet - the ONIX expression is analogous, a customer-facing
product site.

This instance of the mapping is from a retail supplier.

Publisher/Website

Publisher/Website/
WebsiteLink

recordInfoSet

recordInfoSet/recordInfoLink

WebsiteRole=”40” As above, but a separate instance for the publisher’s own Website
for this product.

8.6.3 Resource

The LIDO Resource section is a very specific manifestation of the Linked Heritage use case to aggregate textual and visual surrogates of cultural heritage objects. The product
data record described in the previous section represents the textual surrogate; the “resource” in this mapping area is intended to refer to a digital image or images of the
museum object. For the specific use case in Work Package 4, the visual surrogate could potentially take many forms, from “cover images” of books and other products, to stills
taken from part of a film, or a lower-resolution versions of a photo – the only case where the visual surrogate could in theory be a direct mapping from the product itself.

For ONIX data, the most natural choice was the cover image of the book (provided as a URL in the <SupportingResource> composite), which normally appears in product data
sheets and retail websites. The ONIX message contains most of the information needed by the LIDO resourceSet as explained below, first for the separate Europeana instance,
then for the general mapping to LIDO.

ONIX LIDO Conditions Comments

 resourceSet For the Europeana instance there should be only link provided,
hence there is no structural mapping.

ResourceVersion/
ResourceLink

resourceRepresentation/
linkResource

ResourceMode=”03” AND

ResourceForm=”01” AND

ResourceContentType=”01”

The Europeana requirements are expressed in the conditions: a
still image of the book cover, suitable for open publication.

 rightsResource/rightsType/term
=” http://www.europeana.eu/
rights/rr-p/”

 “Rights reserved” is the only possible option for commercial
images.

 Page 90 of 326

LINKED HERITAGE
Deliverable D4.2

Within reasonable probability there will only be one link matching the conditions specified above, so no structural mapping to the container element is required to repeat the
resourceSet. The Europeana portal image policy

109
 does not specify an exact image size for thumbnails and master images, so no condition can be set automatically (this will

have to be addressed in D4.3 as it is relevant to the terms for contributing data). No more information than in the two fields above is required (or displayed, currently) by
Europeana. In contrast, LIDO can preserve more of the ONIX information provided about the resource, and indeed the entities and structures in both schemas (as would be
expected for a primarily technical information set) are almost parallel:

ONIX LIDO Conditions Comments

SupportingResource resourceSet The full range of ONIX digital resource entities can be mapped
to the equivalent LIDO entity.

ResourceVersion

FeatureValue

ResourceLink

resourceRepresentation

…@type

linkResource

resourceVersionFeaturetype=”01”

The entity for a version of a digital resource maps exactly. The
@type of each representation is mapped to the feature
describing file format, with values mapped from Code list 178.

109 See http://pro.europeana.eu/documents/900548/960640/Europeana+Portal+Image+Policy

http://pro.europeana.eu/documents/900548/960640/Europeana+Portal+Image+Policy

 Page 91 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX LIDO Conditions Comments

ResourceVersionFeature

ResourceVersionFeatureType

FeatureValue

resourceMeasurementsSet

measurementType

measurementValue

measurementUnit=””

measurementUnit=”Mb”

measurementUnit=”pixels”

resourceVersionFeatureType=”02”

OR

resourceVersionFeatureType=”03”

OR

resourceVersionFeatureType=”05”

OR resourceVersionFeatureType=”06”

resourceVersionFeatureType=”06”

resourceVersionFeatureType=”05”

resourceVersionFeatureType=”02”

OR

resourceVersionFeatureType=”03”

Any “features” that are measurable in integers or decimals are
selected. The relevant units are selected on the same element.

ResourceMode resourceType/term LIDO resource type is non-repeating, so the most general ONIX
classification was used, in line with the LIDO specification. The
mapping is a simple ID/term pair.

FeatureValue resourceDescription resourceVersionFeatureType=”02” The remaining “feature”, the file name, is mapped to a simple
descriptive note field.

ContentAudience resourceDescription Another descriptive note used to map intended audiences (valid
because LIDO allows “contextual” descriptions).

Values mapped from Code list 154.

ResourceForm resourceDescription ONIX “resource form” details the form of access to the resource.

Values from Code list 161.

 Page 92 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX LIDO Conditions Comments

ResourceContentType resourceDescription ONIX “content type” classifies the subject of the content item,
and is thus more specific than could be mapped to
lido:resourceType above.

Values from Code list 158.

ContentDate/Date

ContentDate/
ContentDateRole

resourceDateTaken/
date/latestDate

…@label

(values from Code list 155)

ContentDateRole=”01”

ContentDateRole=”04”

ContentDateRole=”17”

ONIX content dates for publication, broadcast and last
modification are here mapped to a latest estimate of the
creation of the resource (thus, no earliest date is mapped).

 rightsResource/
creditLine=” © All rights
reserved.”

 There is no clear way to extract a rights statement for the
resource from the ONIX message. This default value was
inserted as a safety measure.

Note from the final part of this mapping that no rights information is carried explicitly for associated digital resources in the ONIX message. This aspect will be covered in detail
within D4.3.

8.7 PROGRESS OF ONIX 2.1 MAPPING

Linked Heritage partner, MVB, is currently working to finalise a version of the Excel spreadsheet used to document the ONIX 3.0.1 mapping, replacing ONIX 3.0.1 XPATHs with
the relevant XPATHs for the ONIX 2.1 schema, configuring syntactic and semantic mappings to the code list values used in ONIX 2.1 and removing any ONIX for Books elements
that were not present in version 2.1.

The current version documents all relevant XPATHs and a complete version is expected before the end of 2012 to accompany this document. Major differences were identified
mainly in the <Collection> and <CollateralDetail> blocks.

File: D4-2_Specification-of-technologies-chosen.docx Page 93 of 326

LINKED HERITAGE
Deliverable D4.2

9 DDEX MAPPING

This mapping is potentially the second most detailed of the four, since DDex is of comparable complexity
to ONIX for Books. So far only an outline mapping of DDex instance data to the MINT aggregator has been
attempted, but this shows promise. Due to the limitations of the project’s time and resources, more
attention was devoted to ONIX and the other, more compact schemas in order to fully survey those
schemas. It is expected that similar issues to those in the ONIX mapping will also apply to DDex, but with
the added aspects of:

 More complex XML structures such as lists of resources that almost certainly will not be mapped
within MINT without further XSLT implementation. Because the DDex structure analyses
products (“releases”) down their component resources and works (it is a less denormalised
schema than ONIX), and relates all three types of entity via internal references in the XML
document, the XSLT will need to handle many sets of variables and complex conditional
statements to rebuild the type of concrete descriptive statements expected by LIDO. This is not
yet possible in MINT.

 A larger overall schema with more elements and structures. The data elements from each level
of the aforementioned analysis are hierarchically organised for the purpose of allowing rights,
licence and deal management by all the partners of the recorded music supply chain, and thus an
extra level of “production” detail is present in DDex which is not found in the other schemas
(although to some extent in IPTC).

A very general, informal and informative survey of the DDex Release Message is attempted here, to show
within the outline of the LIDO schema, where relevant descriptive and administrative data could be
mapped, mostly by analogy to the similar ONIX product information message.

LIDO DDex

<lido:lido> ReleaseID

 <lido:descriptiveMetadata>

 <lido:objectClassificationWrap>

<lido:objectWorkType> ReleaseType
110

<lido:classification> Genre, Keywords, CarrierType

 <lido:objectIdentificationWrap>

<lido:titleWrap>

<lido:objectDescriptionWrap> GenreText, SubGenre, Synopsis

<lido:objectMeasurementsWrap>
NumberOfUnitsPerPhysicalRelease,

Duration

110 For allowed value set, see: http://ddex.net/dd/ERN34-DSR40/DD/ddex_ReleaseType.html

http://ddex.net/dd/ERN34-DSR40/DD/ddex_ReleaseType.html

 Page 94 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO DDex

 <lido:eventWrap/>

Creation event [one per MusicalWork]:

MusicalWorkContributor – ID, name(s),

role(s)

Recording event [one per Soundrecording,

but not currently supported by LIDO.

“Performance” event type may be

suitable]:

ResourceContributor – ID, name(s),

role(s), ArtistProfilePage

IndirectResourceContributor [e.g.

composers] – ID, name(s), role(s)

Publication event [one per Release]

OriginalReleaseDate, TerritoryCode,

LocationDescription, LabelName

 <lido:objectRelationWrap>

<lido:subjectWrap> Character
111

<lido:relatedWorksWrap>

RelatedRelease [one per release]

Resource [one for each sound recording

released in this product] – ID, Title,

SequenceNumber

 </lido:descriptiveMetadata>

 <lido:administrativeMetadata>

 <lido:rightsWorkWrap/>

PLine [“phonogram” or sound recording

rights statement], CLine [copyright

statement]

 <lido:recordWrap/>

MessageId

PartyID [the sender of the message]

TradingName [the sender of the message]

 <lido:resourceWrap/>
DistributionChannelPage [for the retail link

to the product in context]

 </lido:administrativeMetadata>

</lido:lido>

111 A narrative protagonist: “A Character is usually an imaginary Party that is represented in a Creation.”
(see http://ddex.net/dd/ERN34-DSR40/DD/ddex_Character.html)

http://ddex.net/dd/ERN34-DSR40/DD/ddex_Character.html

File: D4-2_Specification-of-technologies-chosen.docx Page 95 of 326

LINKED HERITAGE
Deliverable D4.2

10 EIDR MAPPING

The EIDR schema is the most compact, since it is referent data set for EIDR itself, the film and television
asset identification registry. As part of a DOI implementation, the schema makes full use of the DOI
metadata kernel112 and so can identify objects of many different kinds, including conceptual abstractions,
product types, parties involved in creations and users of the registry itself. Only the product types are
considered here, although since the registry metadata is optimised for its primary use as a support for
interoperability, many entities are described only through identifiers and it may be necessary for any
serious use of the data to resolve (some of) these using external datasets. The broader use case
notwithstanding, the compatibility of EIDR with LIDO and its relatively small size mean this mapping is
relatively simple and reliable.

The only semantically relevant point to note is that the “asset” that is commonly registered in EIDR
represents an abstraction one step above the level of the product type. The “encodings” of the
audiovisual creation – the distributable versions available for retail – are a secondary entity, since a given
AV creation is normally released in a variety of encodings, and one of the key benefits of EIDR is to relate
all of these together. Therefore further technical work will be needed for Linked Heritage to ensure that
the product can be identified and linked to a retail source.

The syntactic mapping is currently in progress. The table below summarises the semantic mappings
identified so far, and some of the relevant conditions, value mappings and other observations, in the
same way as the heuristic table for DDex above. Notable absences are any subject classifications, and
potential links to retail contexts. These are areas where data would have to be integrated from other
sources (and services).

LIDO EIDR Comments

<lido:lido> ID, AlternateID

 <lido:descriptiveMetadata>

 <lido:objectClassificationWrap>

<lido:objectWorkType> ReferentType, PackagingClass The ReferentType

classifies the genre

of AV creation (e.g.

movie or TV series),

the PackagingClass

the type of format

(e.g. DVD or

download).

<lido:classification> PrimaryLanguage,

SecondaryLanguage,

Manifestation, StructuralType,

Mode, CountryOfOrigin, EditClass,

EncodingClass, ColorType, Codec,

MPEGProfile, MPEGLevel,

PackagingClass

The EIDR

“manifestation” here

refers to the aspect

of the AV creation is

in this language

(audio, text

subtitles).

StructuralType and

Mode are DOI

kernel terms (see

footnote 82).

 <lido:objectIdentificationWrap>

112 For the full description and enumeration of the DOI kernel see:
http://www.doi.org/doi_handbook/4_Data_Model.html#4.3.1

http://www.doi.org/doi_handbook/4_Data_Model.html#4.3.1

 Page 96 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO EIDR Comments

<lido:titleWrap> ResourceName,

ReplacedAlternateResourceNames,

AlternateResourceName,

DisplayName

<lido:objectDescriptionWrap> Description Descriptive notes

are found in EIDR

for specific edits

and encodings, as

well as audio tracks;

these must be short

and useful for

identification rather

than “filmography”.

<lido:objectMeasurementsWrap> ApproximateLength, Size,

BitrateAggregateMass,

ApectRation, HeightPixels,

WidthPixels, FrameRate

 <lido:eventWrap/> Creation event:

Director, Actor

Production event:

Publishing event:

PrincipleAgent, ReleaseDate,

EndDate

The EndDate is

used for series in

case they have

ended.

 <lido:objectRelationWrap>

<lido:relatedWorksWrap> Clip, Episode, Season,

AdjunctContent, AlternateContent

Parts of series and

film clips can be

described here; also

“adjuncts”

(supplementary

content e.g. extras

on a DVD) and

“alternate” camera

angles, audio tracks

etc.

 </lido:descriptiveMetadata>

 <lido:administrativeMetadata>

 <lido:rightsWorkWrap/> CurrentAssetHolder

 <lido:recordWrap/> Registrant

 </lido:administrativeMetadata>

</lido:lido>

File: D4-2_Specification-of-technologies-chosen.docx Page 97 of 326

LINKED HERITAGE
Deliverable D4.2

11 IPTC CORE AND EXTENSION MAPPING

The mapping of IPTC “properties” has been completed in its semantic aspect, as well as the LIDO syntax that will be used to represent the full information for an image file. Both
aspects are presented in the table below. Note, however, that the mapping as yet cannot be realised in MINT as an XSLT since the XMP files embedded in digital images are not
in a format that can be ingested by MINT, and the RDF syntax used with the XMP “wrapper” needs to be reduced to a predictable “schema” for the mapping to be performed in
a stable way for all data uploads. A spreadsheet detailing the full semantics, syntax and conditional statements is currently available, with the semantic mappings (detailed
below) developed and reviewed in direct cooperation with IPTC. There is agreement with the Europeana Photography project that this agreed mapping should be used for
aggregations of IPTC data by Europeana Photography.

Mappings which were particularly successful were those involving the subject of the image, and the use of controlled vocabulary (subject) classifications, as might be expected
for the photo industry which lays a strong emphasis on these as tools for image discovery. A common point of interest for commercial and heritage photo curators is the
location shown in the image, and this is expressed perfectly using the same semantics and syntax in LIDO as for IPTC, both for the location shown and the location where the
image was taken. As noted below, some serious problems arise due to the lack of entity definition across the IPTC syntax and the minimal provision of rights and licensing
information in LIDO.

LIDO IPTC Comments

<lido:lido> Iptc4xmpExt:DigImageGUID

 <lido:descriptiveMetadata>

 <lido:objectClassificationWrap> Iptc4xmpCore:

IntellectualGenre

Iptc4xmpCore:

Scene

<lido:objectWorkType>

<lido:classification>

 <lido:objectIdentificationWrap>

<lido:titleWrap> dc:title

<lido:objectDescriptionWrap>

 Page 98 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO IPTC Comments

<lido:descriptiveNoteValue> dc:description

Iptc4xmpExt:AddlModelInfo

Iptc4xmpExt:ModelAge

Using descriptive

notes for model

information is

unsatisfactory but

necessary due to

lack of “model”

entities in IPTC.

<lido:repositoryWrap>

repositoryName/legalBodyID

workID

Iptc4xmpExt:RegistryId

Iptc4xmpExt:RegItemId

This is the only

scheme that

explicitly specifies

where and as what a

product is registered.

repositoryName/legalBodyID

workID

Iptc4xmpExt:ImageSupplier

Iptc4xmpExt:ImageSupplierImageID

A distinct

“repository”

representing the e.g.

photo library or

agency that supplied

this copy of the

image.

<lido:objectMeasurementsWrap>

measurementValue[measurementType=”Height”]

measurementValue[measurementType=”Width”]

measurementUnit=”pixels”

qualifierMeasurements=”maximum available”

Iptc4xmpExt:MaxAvailHeight

Iptc4xmpExt:MaxAvailWidth

Note that some XMP

namespaces (e.g.

exif and tiff) contain

measurements for

the image at hand,

but are not part of

the IPTC

specification.

 Page 99 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO IPTC Comments

 <lido:eventWrap/>

eventDate/latestDate

actorNameSet/appellationValue

roleActor/term

eventDescriptionSet/descriptiveNoteValue

eventPlace (and sub-elements)

photoshop:DateCreated

dc:creator

photoshop:authorsposition

Iptc4xmpExt:DigitalSourceType

Iptc4xmpExt:LocationCreated

The eventPlace

structure maps the

same pattern as the

placeSubject

structure below, but

within the creation

event context here.

actorNameSet/appellationValue photoshop:CaptionWriter

 <lido:objectRelationWrap>

<lido:relatedWorksWrap>

subjectConcept/term

subjectConcept/term

subjectConcept/conceptID

dc:subject

Iptc4xmpCore:SubjectCode

Iptc4xmpExt:CVterm

Note that the

CVTerm value must

be deconcatenated

at “:” and split into

conceptID and term.

 Page 100 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO IPTC Comments

placeSubject/place (partOfPlace…)

/placeNameSet/appellationValue

Iptc4xmpExt:Sublocation

Iptc4xmpExt:City

Iptc4xmpExt:ProvinceState

Iptc4xmpExt:CountryName

Iptc4xmpExtCountryCode

Iptc4xmpExt:WorldRegion

These IPTC fields

correspond to a

hierarchy of

locations

represented in LIDO

by adding

“partOfPlace” into

the XPATH where

noted. CountryCode

and CountryName

are at the same

level.

subjectEvent/event/eventName/appellationValue Iptc4xmpExt:Event

subjectActor/actor/nameActorSet/appellationValue Iptc4xmpExt:PersonInImage

subjectActor/actor/nameActorSet/appellationValue

subjectActor/actor/actorID

Iptc4xmpExt:OrganisationInImageName

Iptc4xmpExt:OrganisationInImageCode

 Page 101 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO IPTC Comments

subjectObject/object/objectNote

(and further separate instances

with IPTC property name as @lido:label)

subjectObject/object/objectID[@type=”Inventory

number”]

Iptc4xmpExt:AODateCreated

Iptc4xmpExt:AOCopyrightNotice

Iptc4xmpExt:AOTitle

Iptc4xmpExt:AOCreator

Iptc4xmpExt:AOSource

Iptc4xmpExt:AOSourceInvNo

Almost the full

details of the artwork

or object portrayed

in the image are

mapped as

objectNotes, which

is unsatisfactory. At

least a full LIDO

description of the

object could be

linked from the

objectID.

 </lido:descriptiveMetadata>

 <lido:administrativeMetadata>

 rightsWorkSet/creditLine

dc:rights

photoshop:Credit

rightsHolder/legalBodyName/appellationValue photoshop:Source

rightsHolder/legalBodyName/appellationValue

rightsHolder/legalBodyID

rightsHolder/legalBodyWeblink

plus_1_ :LicensorName

plus_1_ :LicensorID

plus_1_ :LicensorURL

rightsHolder/legalBodyName/appellationValue

rightsHolder/legalBodyID

rightsHolder/legalBodyWeblink

dc:creator

plus_1_ ImageCreator

plus_1_ :ImageCreatorID

Iptc4xmpCore:CiUrlWork

 <lido:recordWrap/>

 Page 102 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO IPTC Comments

<lido:recordID> xmpMM:InstanceID

 </lido:administrativeMetadata>

</lido:lido>

 Page 103 of 326

LINKED HERITAGE
Deliverable D4.2

Important properties which could not be mapped due to lack of equivalents in LIDO, or use-specific semantics in IPTC, include:

IPTC property Comments

Iptc4xmpCore:CiUrlWork This element holds the URL of a Web site owned by the photo’s creator. LIDO cannot express this as
part of its eventActor structure, so it has been mapped to a distinct “creator as rightsholder” entity in
lido:rightsWork.

dc:creator This element holding the photographer’s name is duplicated in the eventActor and the “creator”

rightsHolder in LIDO, in case other optional fields serving this purpose are not included.

plus_1_:MinorModelAgeDisclosure

plus_1_:ModelReleaseID

plus_1_:ModelReleaseStatus

plus_1_:PropertyReleaseID

plus_1_:PropertyReleaseStatus

These terms from the PLUS rights and licensing vocabulary could find no equivalents in LIDO. They

hold important data about the legality of persons and objects portrayed in the image, with specific

reference to an agreement or similar documentation.

xmpRights:UsageTerms Although general rights can be expressed in a fairly granular way in LIDO (see the ONIX copyright

statement in section 9.6.1) usage terms cannot.

File: D4-2_Specification-of-technologies-chosen.docx Page 104 of 326

LINKED HERITAGE
Deliverable D4.2

12 TECHNICAL SPECIFICATION – AGGREGATION PLATFORM

As noted during the evaluation of the ONIX for Books semantic and syntactic mapping (see section 9),
many of the problematic parts of a commercial metadata mapping to LIDO arise in part from the
semantics and syntax of the LIDO schema itself, and partly from the software implementation of XSLT
used to perform the mapping. This section summarises the successes and remaining challenges of using
the MINT aggregator and XSLT engine to process commercial sector data.

12.1 DATA UPLOAD AND PRE-PROCESSING

Basic processing of data files at the point of exchange is common to heritage and commercial sector uses.
Some issues discovered during the mapping work were common to all four schemas, while others arise
from the specific schemas themselves, notably EIDR and IPTC, where there are unusual aspects in the
data exchange environment:

 EIDR – data files are actually outputs from the EIDR database, via an API or Web interface, in
response to queries from registrants and registered users and hence is normally used internally
to other systems connected to EIDR;

 IPTC – semantic properties are embedded in RDF/XML syntax, then an outer layer specifying the
XMP file format, and the data is then embedded within the image file itself, for extraction and
updating by photo storage, manipulation and archiving software. Although XMP data can be
extracted at many stages of the photo workflow, normally it is not separated from the photo
content.

12.1.1 Namespaces and schemas

Once data is uploaded to MINT in its current version, a schema is extrapolated from the data instance
using the XPATHs actually found therein. A namespace prefix is automatically generated and assigned to
this “schema” by MINT and used to identify all source XPATHs in its mappings. This leads to three
problems when aggregating commercial data:

1. Not all possible XPATHs may be present in actual sample data (hence the iterative sample data
creation method discussed in section 5.5);

2. Sample data from real schema users may contain errors and thus invalid XPATHs that impede the
mapping work by creating the illusion that the “schema” imposed by MINT is the standard
schema for the data under consideration (hence here the mappings were compared against the
standards as in section 5.5);

3. Every new and different data upload generates a new namespace prefix, as it contains new
XPATHs and MINT “detects” a new “schema”. This is the most serious difficulty for commercial
data, since actually the standard schema is usually known and should be used to validate all data
ingested by an aggregating system.

These considerations led to the basic step of pre-processing all data uploads, when needed, by hand, so
that they specified their own namespace prefix and schema (this was kept constant throughout). It should
also be noted that solving this problem will become essential if data is to be aggregated at scale, and for
any use in creating linked data representations.

It would be a significant improvement if a standard schema (in the form of an .XSD file) could be uploaded
to MINT to be used in creation of a mapping – this would result in the assignment of a standard
namespace, and ensure all possible valid XPATHs could be mapped. Later, instance documents should
then be checked against the standard schema, and mapped as appropriate.

12.1.2 EIDR

Outputs from the EIDR database contain isolated XML records, from which well-formed XML documents
can be created simply by the addition of a root node. Another aspect of pre-processing might be to select
only records which describe entities at the product level.

 Page 105 of 326

LINKED HERITAGE
Deliverable D4.2

12.1.3 IPTC Core and Extension

This standard results in data which needs the most intense pre-processing. The steps involved will include
at least:

1. Extraction of the RDF/XML data from the “XMP packet” (this consists simply of a header
identifying the data as XMP so it can be easily removed);

2. Normalisation of the RDF/XML syntax;
3. Extraction of the relevant IPTC Core and Extension properties and assignment of a single,

temporary “IPTC Core and Extension” namespace (purely for the aggregation process);
4. Preservation of the various namespaces of the properties, perhaps by transforming them to XML

attributes.

The most potentially complex operation will be step 2, since the XMP standard113 only defines a loose
“syntax” for the combination of IPTC’s properties and subproperties (the latter being used mainly for
locations and contact details). Thus the RDF/XML elements extracted in step 1 can occur in many
syntactical variations, giving rise to alternative XPATHs, each of which would need to be mapped
separately to the correct XPATH in the LIDO target. The variations in syntax fortunately do not affect the
reference of any properties to the entities identifiable within any XMP file; they are purely convenient
structures for software applications to read and write the data, rather than affecting the data model.

Currently MINT does not handle RDF data uploads, which would obviate steps 2. – 4., and hence the
mapping cannot yet be implemented in MINT.

12.2 UPDATES

As noted in section 4.5.1, MINT does not link together data records with the same identifier, nor reconcile
contradictory records for the same product. In contrast, all four commercial schemas have some kind of
(mostly) explicit or (sometimes) implicit support for, or mandate for, updates and de-duplication.

Schema Elements for updates and deduplication

ONIX These attributes can be added to all ONIX elements so that individual data items
can be prioritised, deduplicated and updated:

@datestamp

@sourcename

@sourcetype

Update messages are recognised by the value of onix:NotificationType.

DDex Two elements can be set to “true” to indicate the current Release Message should
replace previous data for the same release:

UpdateIndicator – specifies that the message contains updated information;

isUpdated – identifies each section which should replace previous data.

EIDR The registry itself is used to deduplicate data, and specifically identifiers, for assets,
and thus is continuously updated.

113 See http://www.adobe.com/devnet/xmp.html for details of the XMP syntax.

http://www.adobe.com/devnet/xmp.html

 Page 106 of 326

LINKED HERITAGE
Deliverable D4.2

Schema Elements for updates and deduplication

IPTC The following XMP properties (not included in the IPTC format) are often used to
track versions of the image file as opened, saved and over-written by software
applications:

xmpMM:DocumentID

xmpMM:OriginalDocumentID

xmpMM:InstanceID

The elements below (sub-elements of the xmpMM:History event structure) specify
individual changes made at each step of the file’s history:

xmpMM:History

stEvt:action

stEvt:instanceID

stEvt:when

stEvt:softwareAgent

stEvt:changed

Finally, the date of the last changes to the XMP metadata set as a whole is held by
this element (explicitly endorsed by the IPTC specification):

Xmp:MetadataDate

File: D4-2_Specification-of-technologies-chosen.docx Page 107 of 326

LINKED HERITAGE
Deliverable D4.2

13 METADATA MODEL SELECTION

A substantial part of the research undertaken for this report was the investigation into potential sources of data, both for identifiers and for detailed descriptive, technical and
rights metadata. The findings below were drawn from direct correspondence with the experts, standards bodies and other authorities responsible for the protocols, guidelines
and licenses (where applicable) governing the use of data and in some cases for the data itself (i.e. in the case of ISAN and EIDR, the standards body manages the central registry
of all identifiers and supporting data). As noted already in section 2.2.2, the terms of reference for this exercise, from the Linked Heritage Description of Work, were expanded
to take into account the wider use cases of providing culturally relevant information and an acceptable and sustainable legal-commercial business case for contributing data – in
these cases the findings are necessarily very basic preliminaries to the detailed work on D4.3 to follow them.

Selection

criteria

Books & Audiobooks Film & TV Recorded music & sound Photography

 ISBN ONIX ISAN EIDR ISRC

GRid

DDEX PLUS ID IPTC Core

and

Extension

Established

user base

Estimated 25

million

numbers

assigned

across EU (in

500,000

publisher

prefixes)

(as of 2011)

User groups in

over 20

countries,

including many

EU states.

Several

hundred

implementers.

240,000

assets

registered in

EU (c. 37%

of 600,000)

(as of 2011)

212401 assets

registered

183129 have

CountryOfOrigin=us

(as of 2011)

Estimated 5

million

ISRCs, with

c. 1/3 in the

EU

16 “charter”

members

including record

companies,

distributors and

authors’ rights

representation
114

.

Several hundred

implementers.

Strong industry

backing but yet

to build user

base and item

registry

Maintained

and promoted

by IPTC and

CEPIC (both

EU)

114 See http://ddex.net/current-ddex-members-0

http://ddex.net/current-ddex-members-0

 Page 108 of 326

LINKED HERITAGE
Deliverable D4.2

Selection

criteria

Books & Audiobooks Film & TV Recorded music & sound Photography

 ISBN ONIX ISAN EIDR ISRC

GRid

DDEX PLUS ID IPTC Core

and

Extension

Adherence to

standards

and/or

standards

status in its

own right

ISO standard

2108:2005

(ISMN is ISO

standard

10957:2009
115

and ISTC is

ISO standard

21047:2009
116

)

Developed by

Assoc.

American

Publishers;

maintained by

US and UK

book industry

groups through

EDItEUR

ISO

standards

15706-

1:2002 and

15706-

2:2006 (V-

ISAN)
117

“Promoter” and

“contributor”

members from all

sections of the

filmed

entertainment

supply chain

(mainly US but

some important EU

industry groups)

Implementation of

DOI, which is ISO

standard

26324:2012

ISRC is ISO

standard

3901:2001
118

GRid

developed

and

maintained

alongside

ISRC

Developed and

maintained by

consortium of

record

companies,

distributors and

authors’ rights

representation

Proposed

industry

standard

awaiting wide

adoption

Supported by

leading

developers of

industry

standards

Standard

inherits some

ambiguities

from Dublin

Core

Standard

applied

inconsistently

115 See http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43173
116

 See http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=41603
117 See http://www.isan.org/pls/portal/URL/PAGE/ISAN_ABOUT_ISAN/ISAN_ABOUT_ISAN/ABOUT_ISAN/70_OFFICIAL_STANDARD/
118 See http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=59860

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43173
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=41603
http://www.isan.org/pls/portal/URL/PAGE/ISAN_ABOUT_ISAN/ISAN_ABOUT_ISAN/ABOUT_ISAN/70_OFFICIAL_STANDARD/
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=59860

 Page 109 of 326

LINKED HERITAGE
Deliverable D4.2

Selection

criteria

Books & Audiobooks Film & TV Recorded music & sound Photography

 ISBN ONIX ISAN EIDR ISRC

GRid

DDEX PLUS ID IPTC Core

and

Extension

Demonstrated

interoperability

with other

metadata

models,

including those

familiar to the

public sector

Widely used in

publishers’,

retailers’,

distributors

and library’s

systems;

designed to

enable supply

chain

interoperability

Mappings to

and from

MARC21

already exist;

RDA/ONIX

framework

maps key

vocabularies to

library

terminologies;

VMF

demonstrates

commonalities

with CIDOC-

CRM

Lack of

known

underlying

data model;

proprietary

database

output

format

Developed to be

interoperable with

other standards,

including ISAN,

ISRC, UPC, Ad-

ID
119

Both widely

accepted

and used

within other

standards

(e.g. DDex)

Based on the

same Indecs

data model as

ONIX so in

principle

structurally

compatible with

e.g. LIDO;

terminological

compatibility with

library and

heritage

schemas

demonstrable

from VMF

Licensing terms

data model

similar to those

used in other

domains; PLUS

Coalition is

partner on the

Linked Content

Coalition
120

 so

interoperability

expected to be

demonstrated

by common

rights

expression

model

Dublin Core

basis of some

terms could

lead to some

semantic

ambiguity due

to IPTC-

specific

definitions of

DC terms;

Organisational

openness to

interoperability

proven by

inclusion of

e.g. VRA and

PLUS

properties

119 See http://eidr.org/documents/EIDR_Interoperability_with_Other_Standards_Identifiers_March2011.pdf
120 See http://www.linkedcontentcoalition.org/Coalition_Partners.html for full list of partners.

http://eidr.org/documents/EIDR_Interoperability_with_Other_Standards_Identifiers_March2011.pdf
http://www.linkedcontentcoalition.org/Coalition_Partners.html

 Page 110 of 326

LINKED HERITAGE
Deliverable D4.2

Selection

criteria

Books & Audiobooks Film & TV Recorded music & sound Photography

 ISBN ONIX ISAN EIDR ISRC

GRid

DDEX PLUS ID IPTC Core

and

Extension

Demonstrated

and/or potential

ease of

integration with

the

technologies

selected in

other thematic

work-packages

(i.e. Linked

Data, PID,

selected

metadata

models)

Stable, unique

persistent

identifier

already in use

both with

Indecs-based

standards and

MARC family

and CIDOC-

CRM data

Based on

Indecs so

CIDOC-CRM

mappable

Stable,

persistent

identifier

Some

ambiguities

inherent in

standard,

mainly the

nature of

the entity

identified

Hierarchies of

entities and

relationships,

based on the

DOI/Indecs data

model

RDF compatible

Stable,

unique

persistent

identifiers

already in

use for

Indecs-

based

standards

Based on Indecs

so CIDOC-CRM

mappable

Stable, unique

persistent

identifier

Shares Dublin

Core basis

with ESE &

EDM but uses

IPTC-specific

definitions of

most

properties

Maturity and

quality of

available

technical

implementation,

documentation

and support.

Full documents

freely available

Strong

implementation

support

Full documents

freely available

Strong

implementation

support

Full

documents

freely

available

Full documents

freely available

Strong

implementation

support

Full

documents

freely

available

Full documents

freely available

Strong

implementation

support

Implementation,

documentation

and support at

very early stage

Full

documents

freely

available

 Page 111 of 326

LINKED HERITAGE
Deliverable D4.2

Selection

criteria

Books & Audiobooks Film & TV Recorded music & sound Photography

 ISBN ONIX ISAN EIDR ISRC

GRid

DDEX PLUS ID IPTC Core

and

Extension

Technical

access to data

Books-in-Print

services

ISBN agencies

and national

bibliographies

in each EU

state if no

Books-in-Print

exists

Many and

various

sources, via

API or bulk

distribution of

data from

publishers or

trade data

aggregators

API

Mirroring

API

Mirroring

Most

identifier

data

probably

found in

DDex

sources;

distributed

registries not

easily

accessible

Provider-specific

data feeds

probably

available but no

standard

centralised

access likely;

Complex

message

structure means

extra level of

data extraction

needed

API Most data

kept in

proprietary

databases

 Page 112 of 326

LINKED HERITAGE
Deliverable D4.2

Selection

criteria

Books & Audiobooks Film & TV Recorded music & sound Photography

 ISBN ONIX ISAN EIDR ISRC

GRid

DDEX PLUS ID IPTC Core

and

Extension

Legal access to

data

May be

restricted due

to catalogue

record

licensing

May depend on

many legal and

licensing

factors,

including

copyrighted

content as part

of messages

and

commercial

business

models of data

providers

Data can be

freely

accessed

and re-used

for any

purpose,

including

commercial

but all

metadata

must remain

associated

with the

ISAN ID

codes; no

replication

of service

Available for reuse;

No replication of

service

May depend

on many

varied legal

and

commercial

factors due

to

decentralised

nature of

registration

agencies and

existing

commercial

data

aggregators

May depend on

many legal and

licensing factors,

commercial

business models

of data providers,

but less use of

commercial

content within

(textual)

metadata

Available for

reuse;

No replication

of service

May depend

on many legal

and licensing

factors,

commercial

business

models of

data

providers, but

less use of

commercial

content within

(textual)

metadata

 Page 113 of 326

LINKED HERITAGE
Deliverable D4.2

Selection

criteria

Books & Audiobooks Film & TV Recorded music & sound Photography

 ISBN ONIX ISAN EIDR ISRC

GRid

DDEX PLUS ID IPTC Core

and

Extension

Cost of access

to data

May be

charged

because of

catalogue

record

services; most

ISBN data

probably found

within ONIX

data feeds

Data feeds

probably

available at

limited or no

cost from some

publishers if

commercial

use case

established;

Commercial

data

aggregators

may charge for

data supply

maintenance

12000

Swiss

Francs for 2

years

Minimum 5000

USD per year

Most

identifier

data

probably

found within

DDex

messages;

Distributed

registries,

audio

archives and

data

aggregators

may have

their own

pricing

models

Data feeds

probably

available at

limited or no cost

from some

publishers if

commercial use

case established;

Commercial data

aggregators may

charge for data

supply

maintenance

Nominal

contribution of

c. 100 USD per

year [likely to

change once a

registry is

available]

Data feeds

probably

available at

limited or no

cost from

some

publishers if

commercial

use case

established

 Page 114 of 326

LINKED HERITAGE
Deliverable D4.2

Selection

criteria

Books & Audiobooks Film & TV Recorded music & sound Photography

 ISBN ONIX ISAN EIDR ISRC

GRid

DDEX PLUS ID IPTC Core

and

Extension

Potential to

enrich metadata

content –

schema

“articulation”,

intrinsic

marketing

content, links to

outside

sources,

shared subject

terms, rich

description

n/a High

enrichment

value due to

event-based

data model,

text content

transmitted

within

messages,

links to outside

content with

supporting data

and re-use of

shared

controlled

value lists

Only

minimal

identification

data

available

and lack of

clear data

model or

common

output

format

Only minimal

identification data

available;

Strongly

interoperable

output format and

data model

improves likelihood

of enrichment from

other sources

n/a High enrichment

value due to

event-based data

model, links to

outside content

with supporting

data;

Little use of

common

classification

vocabularies

n/a Rich

descriptive

content

(subjects,

classifications,

locations,

artistic

content) with

use of shared

vocabularies;

Lack of

common data

model inhibits

further

enrichment

 Page 115 of 326

LINKED HERITAGE
Deliverable D4.2

Selection

criteria

Books & Audiobooks Film & TV Recorded music & sound Photography

 ISBN ONIX ISAN EIDR ISRC

GRid

DDEX PLUS ID IPTC Core

and

Extension

Links into

existing cultural

heritage

metadata

corpus;

common

entities (place,

actor, event,

concept, work)

and IDs for

them

ISBN already

used widely in

commercial

and cultural

heritage data

for products;

related ISNI

and ISTC

support future

integration of

name authority

and “work”

entity sharing

Support for

ISBN confers

benefits of

existing

interoperability

with libraries;

use of shared

concept IDs

and

cooperative

cataloguing

should mean

some level of

shared entities

for content (at

basic, general

level of

identification)

Some use

for

audiovisual

archives

provides

existing

links with

heritage

corpus

Interoperability with

ISAN and current

work to map EIDR

metadata to CEN

film archiving

standards should

enable links in

future

Some use in

audio

archives

(e.g.

broadcast

media) may

provide

some level of

shared

recording IDs

Few known

existing links

beyond possible

re-use of ISRCs

by audio

archives due to

business-to-

business focus of

current

implementations

No known links

with existing

heritage data

Strong links

with VRA data

in cultural

heritage

collections;

limited use by

some photo

libraries with

cultural

heritage

images

File: D4-2_Specification-of-technologies-chosen.docx Page 116 of 326

LINKED HERITAGE
Deliverable D4.2

13.1 OTHER FINDINGS

During the background research and practical mapping exercises for deliverable D4.2, several related
areas were investigated which, although not directly contributing to T4.3 or T4.4, are worthy of mention
because of their importance to Linked Heritage and the cultural and commercial sectors more generally.

13.1.1 Potential for increased technical interoperability between sectors

The most obvious benefit, beyond the immediate need for Linked Heritage to enable commercial product
data to appear in Europeana, is the generalisation of the work on this use case to other areas of
collaboration between commercial and heritage sectors. The usefulness of such collaboration has been
mentioned already in the discussion on the VMF in section 4.4.6, and based on the premise of Linked
Heritage WP4 this usefulness is set to increase.

In particular, in the photography sector, there is already a strong overlap in the use cases of photographic
libraries, archives and agencies and the heritage organisations which provide subject material for their
products. In the context of the 2012 CEPIC Congress in London121, a group comprising representatives of
IPTC, VRA and Linked Heritage, as well as photo library and museum image repository managers
identified a need to discuss the provision of heritage information within commercial standards, the
mapping of commercial information to cultural schemas, and the use of linked data identifiers within
both, as well as the need to express diverse rights information across both sectors.

As noted in section 14, for the film and TV sector, the EIDR organisation is investigating interoperability
with CEN’s film archiving metadata standards, and in future, heritage organisation may wish to register
their film assets and use EIDR’s flexible metadata model to link together variants and versions, as well as
allowing concomitant discovery of commercial products incorporating archival materials, or treating
related topics122.

In the field of recorded music it is not clear in which direction(s) cross-sector interoperability will develop,
however, it should be noted that the data schema currently in use already provides the semantic and
syntactic distinctions needed for extremely detailed cultural data aggregation.

The current move towards linked data models in the books world123 seems likely to build on
interoperability with the commercial publishing and book supply industry (which after all supplies many
of the objects of interest in the library domain), both in terms of the foundational RDA/ONIX framework
already mentioned in section 4.4.6, and the existing MARC/ONIX mappings in use by the library sector
(see section 4.4.6) and the on-going work of the RDA developers in IFLA, which explicitly recognise the
importance of maintaining compatibility with commercial models

124
.

13.1.2 Potential for generating Linked Data

The now ubiquitous “design issues” note outlining how to publish linked data on the Web125 listed four
“rules” or “expectations” for linking data “so that a person or machine can explore the web of data”:

 Use URIs as names for things;

 Use HTTP URIs so that people can look up those names;

 When someone looks up a URI, provide useful information, using the standards (RDF, SPARQL);

 Include links to other URIs. so that they can discover more things.

121

 See section on IPTC Metadata Day at
http://www.cepic.org/congress/2012/programme/metadata_iptc_conference and follow-up email group
at http://groups.yahoo.com/group/Cultural-Heritage-Metadata/
122 For an example of a similar business model online, see Ximon at http://info.ximon.nl/en/about-ximon
and the discussion of this Web site in D4.1, section 8.2.3.
123

 Especially in libraries –see the Library of Congress’ programme of work to find a replacement for the
MARC family of formats: http://www.loc.gov/bibliographic-future/
124 See the “Scope and Principles” section at: http://www.rda-jsc.org/rda.html
125 Berners-Lee, T. (2010). Linked Data. Available at: http://www.w3.org/DesignIssues/LinkedData

http://www.cepic.org/congress/2012/programme/metadata_iptc_conference
http://groups.yahoo.com/group/Cultural-Heritage-Metadata/
http://info.ximon.nl/en/about-ximon
http://www.loc.gov/bibliographic-future/
http://www.rda-jsc.org/rda.html
http://www.w3.org/DesignIssues/LinkedData

 Page 117 of 326

LINKED HERITAGE
Deliverable D4.2

The first three rules actually mirror the operation of actionable identifiers already in use in the
commercial and library sectors, where a (non-HTTP) URI can be resolved using a service 126 to look up data
about its referent, and potentially also other resolvable identifiers. The main difference is to explicitly use
the Web architecture itself to represent and deliver the data. However, a less often quoted part of the
same document from Tim Berners-Lee recognises the need to define minimal sets of data127 to attach to
any given identifier; this brings up the related need for data models and ontologies specifying how links
will be made between the identified objects:

 “In practice, when data is stored in two documents, this means that any RDF statements which
relate things in the two files must be repeated in each… A set of completely browsable data with
links in both directions has to be completely consistent, and that takes coordination, especially if
different authors or different programs are involved.”
This approaches the admission that standardised (i.e. shared between the producers of the two
documents) metadata schemas are still needed.

 “One pattern is to have links of a certain property in a separate document. A person's
homepage doesn't list all their publications, but instead puts a link to it a separate document
listing them.”
Here we see the need for clearly defined, and shared, semantics at the level of the “classes” of
data, amounting to shared semantics, only possible either in very small communities, or those
which rely on standardised data models like those described in 4.4.5.

 The design note does not address the issue of “co-reference”
128

 directly. It is one of the
underlying assumptions of linked data on the Web129.

Partly in response to the developments mentioned in 13.1.1 above, Bell (2012) emphasises three
essential factors for genuine interconnection and enrichment of data:

1. Common public identifiers;
2. Interoperable semantics;
3. Shared vocabularies.

Because these are already in use in the commercial metadata world, and to some extent, thanks to
conceptual tools like CIDOC-CRM and data formats like LIDO, in the heritage world too, there are good
reasons to think that useful, scalable linked data can be created based on existing technologies, with the
right design decisions at the start. Indeed, a recent paper (Tsalapati et al., 2012) on reconciling LIDO with
CIDOC-CRM, EDM and linked data formats found several modelling problems which are already at least
partly addressed within commercial schemas like ONIX for Books and DDex.

126

 For example, the DOI resolution service: http://www.doi.org/doi_handbook/3_Resolution.html with
examples in several fields such as books, journals and scientific data sets (see D4.1, sections 6.3.5 and
6.2).
127 In harmony with the concept of referent minimum data and scope of identifiers; see for example
http://www.doi.org/doi_handbook/4_Data_Model.html#4.3.1
128

 See CIDOC Co-reference Working Group for a discussion of this problem in the heritage field
http://network.icom.museum/cidoc/working-groups/co-reference/ and a more technical but practical
discussion in the Web context at http://sameas.org/about.php
129 See the footnote on “context” at http://www.w3.org/2003/04/iri.html#context

http://www.doi.org/doi_handbook/3_Resolution.html
http://www.doi.org/doi_handbook/4_Data_Model.html#4.3.1
http://network.icom.museum/cidoc/working-groups/co-reference/
http://sameas.org/about.php
http://www.w3.org/2003/04/iri.html#context

 Page 118 of 326

LINKED HERITAGE
Deliverable D4.2

13.1.3 Foundations for common standards in rights data communication

Finally, bearing in mind the above points, it is also clear that a new focus on interoperable metadata for
rights expressions is needed in both the commercial and heritage sectors. Requirements selected from
the commercial sector mappings to LIDO and suggested as optional LIDO extensions are detailed in the
next section, although it should be noted that many of these will be the same for heritage uses, especially
in the image rights field. The Linked Content Coalition (mentioned in sections 4.5.1 and earlier in section
14) includes one contributor to the IPTC standard (the PLUS Coalition) and will develop a common rights
expression model which aims to be interoperable with PLUS standards and Creative Commons licences130.
The demonstrator project leading on from the initial LCC work will involve Linked Heritage partner NTUA
and the MINT platform, so ideally the latter will be developed further to enable commercial metadata
management at scale.

130 See, for example, the June 2012 state-of-play summary:
http://www.linkedcontentcoalition.org/uploads/1206120_plenary.pdf

http://www.linkedcontentcoalition.org/uploads/1206120_plenary.pdf

File: D4-2_Specification-of-technologies-chosen.docx Page 119 of 326

LINKED HERITAGE
Deliverable D4.2

14 CONCLUSIONS

In drawing conclusions from this report it must be acknowledged that the work done here has been
experimental in every sense. The semantic mappings created have a high degree of confidence, due to
their reliance on the standards and conceptual models identified in D4.1, and the assistance of the
relevant experts and standards bodies. However, the domains described by the commercial and heritage
schemas are different and the results of D4.2 remain a successful, but not final, first attempt to integrate
them. Further work is needed and will be outlined here.

14.1 SUMMARY

Based on the comprehensive LIDO mapping of data in ONIX for Books 3.0.1 product information format,
and the tentative mappings of EIDR, DDex and IPTC, Work Group 4 has established that LIDO v1.0 is
indeed able to express a practical descriptive record for a wide range131 of commercial products, for use
in the Linked Heritage and Europeana aggregation and display context.

However, this is based on the following caveats which go beyond the technical mapping aspect:

 LIDO is used on the assumption that it can be semantically mapped to the FRBRoo modelling
concept where all item properties are inherited from the conceptual objects, instances of F3
Manifestation Product Type (including F24 Publication Expression).

 Full, granular descriptive detail of the kind expected by book retail and some library catalogues is
not yet achievable (or needed) with LIDO, but could be added without major changes to the LIDO
standard (or disruption to its users).

 Expression of rights and licensing terms, beyond the most basic statement of copyright
ownership and authors’ rights, is not yet possible in LIDO, and must probably be added somehow
in any practical use or at scale.

 Data aggregation on a technical level, and on the level of responsible and commercially
acceptable maintenance, has not yet been addressed and will require further technical
development and the articulation of business requirements and models (at least the latter will
be addressed in D4.3).

With this in mind it is now possible to approach possible contributors for fuller datasets, to assess the
practical application of the mappings for ONIX 3.0.1, develop complete mappings for ONIX 2.1, EIDR,
DDex and IPTC, and discuss possible terms and new services for aggregation of commercial metadata at
scale towards Europeana.

14.2 RECOMMENDATIONS

As noted above, and in section 14.1, this report is a only first step towards fuller interoperability across
commercial and heritage sectors and has identified significant further tasks for Work Group 4, Linked
Heritage, and other interested parties.

14.2.1 For Linked Heritage Work Group 4

The recommendations for Work Group 4 centre on the preparations for D4.3, although they combine
tasks of conceptual modelling, technical specification and legal-commercial research. These aspects, as
has been stressed, are interrelated; in order to complete task T4.2 Contribution Specification, of course
the focus will not be “on technology, but on the legal agreements needed to make this a reality”;
however, those agreements will most likely involve some of the technical requirements already familiar
from the commercial sector. The main question in the next deliverable will be, how acceptable to
commercial providers is the existing level of integration achieved by Linked Heritage, and how much more
is to be done. The recommended next steps are thus:

131 Indeed, products from all four sectors can be represented to some level of detail using only the ONIX
for Books schema; the other schemas provide more media-specific detail and are also LIDO-compatible.

 Page 120 of 326

LINKED HERITAGE
Deliverable D4.2

1. Continue work on EIDR, DDex and IPTC mappings for review by industry experts and
presentation to the project;

2. Liaise with Work Groups 2, 3 and 5 to ascertain feasibility of enhancements of the LIDO schema,
further development of the MINT platform, and adoption of controlled vocabularies from the
commercial schemas, respectively;

3. Continue to engage commercial and heritage sector experts in dialogue with a view to increased
understanding and first-principles interoperability of data models;

4. Begin liaison activities with commercial sector contacts with the aim of
a. Procuring “test” and “prototype” data sets (see section 15.2.2 below);
b. Capturing business requirements for large-scale aggregation and data publication (see

also 14.2.3 below);
5. Specify legal and licensing problems involved in commercial data aggregation and publishing,

and propose possible solutions, in terms of
a. Presentation of data to the end user (inclusion or exclusion of specific data fields,

mappings to ESE and EDM, use of marketing collateral within textual and image
metadata, provision of linked content such as text, still image, audio and AV extracts);

b. Maintenance and management of data;
c. Cost and sustainability.

It should be noted that substantial desk research towards D4.3 has already been undertaken, so the state
of the art in data licensing and re-use is well understood; the main research to follow will now focus on
specific case studies and assessing real-world feasibility from the point of view of potential data
contributors.

14.2.2 For commercial sector data contributors

Work Group 4 has already addressed the need for clear guidance on the contribution of data sets to the
project as part of the Linked Heritage task force that produced a response (published earlier in 2012) to
the new Europeana DEA. The guideline can be found in Appendix 7 in full; it makes three main points,
clarifying the contribution of:

1. “Test Data” for use in creating and refining mappings from commercial schemas to LIDO;

2. “Prototype Data” for contribution to Linked Heritage and publication to Europeana;
3. Signature of the DEA if (and only if) they provide Prototype Data.

Some commercial companies, including Linked Heritage partner MVB, have already contributed “test
data” that has been used in developing the mappings described in this report. Until now, no “prototype
data” has yet been published to Europeana. The next step for interested commercial data providers will
be to contribute test data if they have not done so already, review the LIDO mapping together with Work
Group and discuss their requirements for deriving a subset of elements to publish to Europeana. This
subset may be varied according to the agreed legal and commercial framework within which the
commercial data is provided.

As noted for the ONIX to LIDO mapping in section 8.4.6, the default language of metadata values
(including controlled value sets) is not specified as part of most commercial sector schemas. This should
be discussed with Work Group 4, along with any specific controlled vocabularies used by the data
provider, to discover if a linked data representation of these values may be possible.

14.2.3 For Linked Heritage

In order to support Work Group 4 in completing its work, the following points are raised for the
consideration of the whole project:

1. Prepare sustainability plans and policies as a matter of urgency. One of the most likely and basic
concerns for commercial data providers will be the long-term stability and security of their data,
of the technical platform (MINT) developed within this project, and their ability to access and
manage it if needed.

2. Engage decisively with the wider commercial sector, so that commercial perspectives can be
represented to heritage sector partners, common areas of understanding and practical benefits
realised, and the efforts of Work Group 4 towards interoperability can be supported. Two key

 Page 121 of 326

LINKED HERITAGE
Deliverable D4.2

points of contact will be the Cultural Heritage Metadata interest group of the IPTC (with VRA and
PLUS), and the Linked Content Coalition.

Further points are addressed to specific Work Groups within the project.

14.2.4 For Work Group 2

1. Continue to engage, supported by WG4, with the relevant experts in the heritage domain,
namely the CIDOC-CRM special interest group, the FRBRoo experts within IFLA and CIDOC’s
network, and the Linked Heritage partners in their roles as managers of persistent identifiers
which are already used both sectors (e.g. DOI, ISBN, ISNI) to promote common understanding
and initiatives for enhanced interoperability of standards.

2. Assist Work Group 4 in specifying and proposing reasonable enhancements for the LIDO schema
to the LIDO working group and explaining their benefits (see point 14.2.5 below).

14.2.5 For the LIDO working group

LIDO was originally developed from museum standards and its focus strongly reflects this. However, as a

new standard in its own right, due to the foresight of its designers in basing LIDO conceptually on the

CIDOC-CRM and giving it great structural flexibility and modularity, it can be (and has already started to

be) used in areas very different from the “unique physical object” environment.

Despite this promising sign of wider applicability, the experiments here suggest that there are still

improvements to be made to the schema, not on the level of major redesign (which would be not only

unnecessary but also disruptive of existing use) but simply on the level of revision and (optional)

extensions to and refinements of specific parts of the schema. These would allow existing LIDO users to

continue using the schema, while encouraging new use in two particular areas:

1. Enhanced use in the heritage sector for complex physical objects and conceptual types;

2. Interoperability with commercial sector data as described in this report.

The specific proposals developed during the work of D4.2 are:

1. Complete the mapping of LIDO to CIDOC-CRM taking into account meta-CRM and FRBRoo.

From a strict conceptual modelling point of view, the mappings reported here all depend on the

ability of LIDO to apply its syntax to describe the properties of a class of items, rather than any

one specific item. This is the province of what CIDOC’s CRM interest group currently calls “meta-

CRM”, and the domain-specific entities and processes needed for commercial products fall into

the library-centred model called FRBRoo. Both meta-CRM and FRBRoo are currently draft

extensions to the main (standardised) CIDOC-CRM. In the interests of continuing the Linked

Heritage technical work in full harmony with the wider heritage information community, LIDO

needs to explicitly acknowledge these models as acceptable mappings for its elements, and

detail how their use can be expressed within the LIDO structure (for this, D4.2 has already

suggested flagging the record with F3 Manifestation Product Type in the LIDO record category

elements).

2. Add granular source element identification.

The @encodinganalog attribute used to capture “the internal field label of the source database”

should be supplemented by an extra, optional attribute for the XML namespace prefix of the

“field label” (e.g. @prefix and @base URI) so that for specifications such as the IPTC Core and

Extension properties (and in fact the other Adobe XMP properties) both the various namespaces

and the property names can be separately captured in a structured way. This will also allow

interoperability in future with other (linked data?) formats that import two or more namespaces,

and support the use of vocabulary management tools such as SKOS and VMF.

3. Implement full support for XML namespaces and URI identifiers for all controlled vocabularies.

 Page 122 of 326

LINKED HERITAGE
Deliverable D4.2

ONIX for Books and the other commercial schemas rely on a large number of controlled value

lists, some of which seem likely to be expressible in HTTP URI form in the future
132

. This could

form a complementary task to the SKOSification work of Work Group 3 (see section 14.2.6

below).

4. Add optional extensions to lido:appellationValue and its containing elements.

The LIDO elements eventName, legalBodyName, nameActorSet, namePlaceSet and titleSet are

used to contain names for events, persons (legal and real) places and objects. However, these

elements contain only one sub-element, lido:appellationValue, which represents (whole)

“appellations… titles, identifying phrases, or names” and hence is non-repeatable. This does not

account for the functional granularity of titles and names typical in bibliographic descriptions,

both in commercial and heritage sector data models
133

. Further, these cannot be concatenated

reliably due to the large number of possible display options or levels of detail available, and

mapping their constituent parts to other sections of LIDO (e.g. a treaty signing date mapped

from part of a document title into a LIDO event) will tend to make the data less usable and

mappings less coherent.

The recommendation is thus to add two enhancements to these elements:

a) Attributes expressing relations between title elements and their characteristics should be

enabled for all lido:appellationValue elements and their containing (super-)elements:

@type

@sortorder

@pref

@label

b) lido:appellationValue should be optionally repeatable and its definition broadened to allow

elements of appellations as well as “whole” appellations.

These two enhancements should enable a maximally complex title (such as those found in ONIX

3.0.1) to be mapped into LIDO. An equivalent alternative would be to introduce a sub-element

below the lido:appellationValue (e.g. “appellationValuePart”) but this might possibly make the

revised LIDO incompatible or at least inconvenient for existing users. Making the simple

additions recommended here would not change anything in the existing semantics or syntax of

LIDO, only add more flexible options, useful to both commercial and heritage data providers. See

Appendix 8 for example data using the enhanced schema, also showing how it will retain

validation of the existing LIDO XML files. A natural extra enhancement would be to also add an

optional appelationID element for each set (or combination) of name elements to align with the

“person/persona/presentation” model of names (see section 9.5.7) found in commercial data

and identifier systems such as ISNI134.

5. Enable updating and deduplication at data field level.

The attributes @sender, @datestamp and @sourcetype should be made available options for all

LIDO elements that hold data (as in ONIX for Books 3.0.1). This way the provenance and currency

of data can be checked on an element-by-element basis, rather than just per-record. This will

harmonise best practice with the commercial sector, allow de-duplication of similar records for

the same product, and anticipate some of the likely developments in the use of linked data

cataloguing (specifically, the introduction of “quads” rather than “triples”).

132

 Indeed some controlled vocabularies in current use already are, like the IPTC newscodes, for example
those for “genre”: http://cv.iptc.org/Requester?scheme=genre&format=rdf
133 For example, the MARC format “title statement”
(http://www.loc.gov/marc/bibliographic/bd245.html), “personal name”
(http://www.loc.gov/marc/bibliographic/bd700.html), “varying form of title”
(http://www.loc.gov/marc/bibliographic/bd246.html), “uniform title”
(http://www.loc.gov/marc/bibliographic/bdx30.html), and “corporate names”
(http://www.loc.gov/marc/bibliographic/bdx10.html) all have detailed structure and optional parts.
134 See the ISNI F.A.Q. at http://www.isni.org/docs/isni_faq.pdf (second page).

http://cv.iptc.org/Requester?scheme=genre&format=rdf
http://www.loc.gov/marc/bibliographic/bd245.html
http://www.loc.gov/marc/bibliographic/bd700.html
http://www.loc.gov/marc/bibliographic/bd246.html
http://www.loc.gov/marc/bibliographic/bdx30.html
http://www.loc.gov/marc/bibliographic/bdx10.html
http://www.isni.org/docs/isni_faq.pdf

 Page 123 of 326

LINKED HERITAGE
Deliverable D4.2

6. Usage terms and conditions for the product (available licences) and related resources.

Especially for photo products, but perhaps increasingly with other types in future, it is accepted

best practice to include details of usage terms and conditions, and other types of available

licences, in metadata describing the product. This becomes especially important if the product is

on offer for sale (or licence) directly to customers, and for images it is important that use

metadata should accompany even preview images. For all products, it is an important element of

good customer service practice to only display retail offers to customers who will be able to take

them up, distinguishing either by territory, absolute date, time elapsed after some other

releases, or a combination. Example structures of licence, sales rights and usage terms and

conditions already exist in several commercial schemas
135

; the Linked Content Coalition is

developing a highly generalised rights expression data model to interoperate with all of the

schemas mentioned here, and several more, including many that will be of relevance to heritage

organisations, such as Creative Commons
136

.

As noted in section 8.1.6, a more general rights expression will also certainly be useful for LIDO’s

cultural heritage users in future as more types of digitised and born-digital cultural work

converge across commercial and public sector boundaries.

7. Contact details for licensing.

Again, as in recommendation 10., the photo sector schema IPTC requires the capacity to add

contact details for a licensor and copyright holder to the metadata for an image. Contact details

composites appear in other commercial schemas as well (although as yet not in their LIDO

mappings for Linked Heritage). To allow present interoperability with photo data, and potential

future uses of music and book data, this should be extended both:

a) in its detail (from simply names, locations and Web sites, to include also telephone

numbers, email and postal addresses) and;

b) context within LIDO (from limited use for “legalBodies” to a detailed, optional information

set for any actor within the LIDO schema).

It may be difficult to model the exact semantic relations of some “contacts” with the object of

interest in LIDO. Another problem may be to generalise the concept of “contact details”

sufficiently for current and future uses in LIDO (although it is noted that LIDO already allows a

highly generalisable representation of “place”, and the recommendations here would add a

granular “name” structure; links to a number of examples of contact details models and a draft

generalised model are found in Appendix 9 as possible starting points for this work.

8. Clarify the mandatory status of ISO 8601 formats for LIDO date elements.

The specification states: “General format: YYYY[-MM[-DD]]… Format is according to ISO 8601.

This may include date and time specification.” It is therefore not clear if LIDO strictly intends only

YYYY[-MM[-DD]] to be used, or if other ISO 8601 formats are allowed. This is extremely

important because commercial schemas, which all of course allow a wide range of date formats

to be supplied, may produce instance data with different date types in each file. Some of these

may be accepted as LIDO, others not; therefore future mappings must be based on a clear

indication. Correct and machine-interpretable dates (such as publication embargo dates) are

often critical in commercial applications, and these can only be communicated if date formats

are closely specified.

9. Enable specification of numeral encodings and refer to standard lists of measurement units (and

languages).

The lido:objectMeasurementsSet represents measurements in a generic format (unit, value,

type) but does not constrain the types of numeral encodings (Arabic, Roman, etc.) used for

values, nor the units allowed. Both of these could be enhanced by the use of (optional)

135

 For example, in ONIX for Books (see element listing in Appendix 5, Groups P.21, P.24 and P.26.
136 See for example the most recent LCC project plan:
http://www.linkedcontentcoalition.org/uploads/ProjectPlanv4_April2012.pdf

http://www.linkedcontentcoalition.org/uploads/ProjectPlanv4_April2012.pdf

 Page 124 of 326

LINKED HERITAGE
Deliverable D4.2

controlled value lists taken from international standards, if an, optional @lido:type attribute

were added to the lido:measurementValue and lido:measurementUnit elements. An optional

language and language code scheme attribute pair would also allow direct use of international

standard codes rather than the @xml:lang value set, making direct interoperability with more

commercial schemas possible.

10. Enable reuse of elements and structures from other areas of LIDO for related work, thingPresent,

relatedEvent.

Several commercial schemas rely on giving extensive details of related products, actors and

other entities as part of the relevant information about the product of interest (usually

represented by some kind of optimisation, but recognisable as related entities from their

structure, context or definition). In LIDO, the related entity structures for events allow the full

LIDO entity to be embedded within the top-level event; this should also be allowed at least to

some extent, and optionally, for works and actors where they appear as related entities, at least

for interoperability with the commercial formats, but also as a step towards providing linked

data.

11. Enable full(er) work description for digital resources representing the CHO.

Part of this recommendation is contained in the above point about enabling more reuse of

descriptive structures within related entities in LIDO; the point about allowing usage terms and

rights and licensing expressions is also covered here. As mentioned in section 8.3.1, LIDO would

benefit from more description of digital photographs as works per se so that museums and

heritage picture libraries can provide full data both for CHOs and the images that represent

them, retaining all information indicated by the best practice for photographs (and increasing

interoperability with VRA Core137).

12. Allow granular text item descriptions.

The mappings created to describe third-party publications in the TextContent (section 9.5.8) and

CitedContent (9.5.9) event structures, and the (as yet unmapped) ONIX structures allowing

granular identification and description of text items within products (see section 9.5.7) point

towards the fact that metadata describing any complex, primarily textual product or artefact

involves detailed specification of many other texts and their relations to the object of interest at

several levels of granularity. With the increase of ebooks and digital humanities scholarship, this

need is set to increase. LIDO should attempt to address some of these needs by enabling more

(optional) detail for several composites, especially thingPresent and descriptiveNoteSet, as well

as eventDescription, to allow these to be used to represent published, Web-referencable text

items.

13. Support for structured text items (markup).

As outlined in the recommendations for WG5 below, MINT does not currently support markup

(e.g. XHTML or HTML) in metadata imports. The recommendation is for this type of text to be

detected and removed, but ideally it could be stored and displayed. In order for LIDO to fully

support this use, it should provide technical formatting information about text content.

14.2.6 For Work Group 3

1. Consider the existing published work on VMF in future developments of the Linked Heritage
TMP, and consider registering LIDO vocabularies.

2. Include ONIX code lists within terminology mapping experiments, especially
a. Event types;
b. Actor roles;
c. Content and carrier classifications;
d. Subject classifications;
e. Product / work relators.

137 VRA Core is also notably in-scope for CIDOC-CRM: http://www.cidoc-crm.org/scope.html

http://www.cidoc-crm.org/scope.html

 Page 125 of 326

LINKED HERITAGE
Deliverable D4.2

This has relevance for collaboration with WG2 and WG5 where these make design choices relating to
LIDO and MINT, respectively. Creation of linked data representations of LIDO may also benefit from the
use of commercial sector vocabularies, even if only as a starting point for more generalised data
modelling. The usefulness of these vocabularies to the heritage sector has already been demonstrated by
projects such as the VMF and RDA/ONIX frameworks138.

14.2.7 For Work Group 5

The recommendations for the Technical Integration work group centre on further development of the
MINT system to bring it in line with commercial sector best practice for data management

139
.

1. Data uploads:
a. Add pre-processing of XML (and other format) input files.

As noted in sections 11 and 12, both the EIDR and IPTC data formats require significant
pre-processing to render them as well-formed XML files for input to the MINT system
and mapping to a new schema. It would be convenient (and essential for large-scale
aggregation) to enable a predefined transformation of the input text file (simply adding
or removing characters at the start and end of the text) for these formats to make them
conform to the XML standard. In the case of the XMP container which is used to
transport IPTC properties, a further transformation from RDF/XML to a predictable XML
syntax is required; if this can be done using XSLT, as seems likely from the technical
investigations in WG4, it would be convenient to apply this as an extra step within
MINT’s upload manager.

b. Add pre-processing of HTML markup.
As noted in section 8.5.5, some ONIX data may include formatting markup for end-user
display. For the current use case, XHTML tags should be stripped out to leave plain text.
In D4.3 the possibility of including markup to support a sustainable business case will be
explored.

2. Schema transformation:
a. Implement more of the LIDO schema.

In some parts of the MINT implementation of LIDO, not all allowed elements are
available to map. For the complex data schemas found in the commercial world, the full
structure of LIDO will be needed (including the enhancements detailed above in section
15.2.5).

b. Implement more of the XSLT functionality.
For many commercial schemas, multiple options are available in the data schema which
will be selected on the basis of data’s providers’ individual requirements and the
recommendations of best practice guidelines. In order to express these options, XSLT
functions such as xsl:choose from within the MINT condition editor, as well as more
complex conditional statements, are considerably more efficient than the current
workarounds. Also consider including the use of internal variables and IDs, since (in
particular in the DDex schema) these may be used in the input data to link together
parts of the information record. Finally, some of the existing XSLT code for mapping
data values found in XML uploads could possibly be somewhat simplified, and a default
value (such as “unexpected”) returned when an input value does not match known
code lists. At production level, such unexpected values would have to trigger rejection
of the output element, and possibly rejection of the record (for mandatory elements).

c. Add schema validation and XML namespaces.
Another convenient enhancement would be allowing data providers to upload the XML
schema document (XSD) for their data to allow the validation of input files, but also the

138 Linked Heritage also offers the opportunity for active collaboration with EDItEUR in its role as the
developer and maintainer of the code lists themselves; many of those who developed VMF and
RDA/ONIX are regular collaborators with EDItEUR.
139

 As NTUA expects to be a partner on the successor project to Linked Content Coalition (Rights Data
Integration – see http://www.linkedcontentcoalition.org/uploads/1206120_plenary.pdf, pp30-32) , these
would seem timely enhancements, certainly for commercial sector data, and possibly also for heritage
use in future.

http://www.linkedcontentcoalition.org/uploads/1206120_plenary.pdf

 Page 126 of 326

LINKED HERITAGE
Deliverable D4.2

pre-defined matching of elements to the appropriate namespace. This would be useful
for all commercial data, but especially for data formats like IPTC where properties are
declared from more than one namespace and would potentially be assigned different
prefixes

140
. Most importantly it could be used to map schema-to-schema, as described

in section 4.4.4., avoiding the need to create test data that contains all possible XPATHs
by creating them from the XSD rather than instance XML data. It could be used to
compare schema element definitions directly in the MINT interface by taking them from
the XSD documentation where it exists; ideally it could also show semantic relationships
between all mapped elements, as found in VMF and possibly in later versions of the
Linked Heritage TMP.

3. Database management: (The key here is to ensure that MINT aligns with practices already in use in the
commercial world, reducing the burden of maintenance on contributors to Europeana via Linked
Heritage).

a. Updates to data fields.
It should be possible to upload an updated file, either containing a whole data item or
only part of the record, with relevant attributes either for the record item, or for
individual data elements, with the result that MINT will produce an updated version
including existing data for that record, and replacements made where the datestamp
contains a later date.

b. Party identification for provenance.
As for temporal updates in the previous point (3.a.), relevant data elements or
attributes should be specifiable to enable updates from particular providers to be
prioritised in changing the stored record (e.g. records from a publisher might be given a
higher priority than those from a retailer). This may require checking of attributes on
elements and whole records, but also registration of sender IDs, perhaps even at
authentication level.

c. Deduplication (and merge?) of multiple records for a given item.
Deduplication and merging of data records should be possible at any point, certainly at
upload but also when different or duplicate records for a given product are received
from different data providers.

4. Data publication:
Of all the technical recommendations, these will almost certainly be the most critical for
the business case to be outlined in Linked Heritage D4.3.

a. Flexibility of LIDO to ESE mapping or total flexibility in the output (ESE, EDM or “other”)
mapping.
As discussed in detail in sections 3 and 6., any mapping to ESE or EDM (either from LIDO
or directly from a commercial standard schema) is really only a question of selection
and presentation of elements, rather than a principled decision on semantic and
syntactic ground. Therefore the recommendation is to achieve full separation of
semantic mapping from presentation to potential end-customers by developing MINT
to allow (ideally) complete flexibility in choice of publication schema (i.e. incorporate
two-stage mapping specifications) or at the very least, allow flexibility in which
elements are mapped to the current publication schema, and when.

b. Inclusion of retail links by merging output data with other sources.
Even for those data formats where a link to see a product in its retail context can be
provided (such as ONIX, with publishers’ and suppliers’ product links), there will very
probably be a need to allow other retail offers to be incorporated into an aggregated
data set. Whether this is achieved at the data upload, management or publication stage
will depend on both technical aspects of the aggregation platform and business
requirements of contributors, so it is included here as point to investigate before
working on it in depth in D4.3.

c. Usage terms and conditions for resources, and territorial and temporal (relative and
absolute) restrictions on availability of retail products, data about them, and previews
of their content.

140 The IPTC body might in that case need to define a list of namespaces and properties to act as a schema
since in practice there is not yet an IPTC or XMP schema defined as an XSD.

 Page 127 of 326

LINKED HERITAGE
Deliverable D4.2

Similarly to the previous two points, this is a technical aspect of a commonly accepted
business case element. As for retail links in point (4.b.), mechanisms for selectively
controlling access to metadata, preview content, and the retail links themselves need to
be investigated, either at the level of the initial LIDO aggregation, or via an integrated
rights and permissions module added on to MINT.

After discussion of the requirements for data publication above, it should be clear that some of the
recommendations for technical enhancements (and aspects of those recommended for LIDO) touch on
the role of Europeana as the data publishing end-point; these connections are addressed below in 14.2.9.

14.2.8 For CIDOC-CRM and FRBRoo

Since the work of Linked Heritage partners, both in heritage and commercial organisations, builds on
CIDOC-CRM and (in the case of WP4 at least) FRBRoo and metaCRM, and given that many Linked Heritage
partners are also active members of one or more CIDOC interest groups, it is appropriate to suggest ways
that these experts could develop their work in parallel with ours. This dialogue began as part of the D4.2
work (see for example Appendix 3, a response to questions raised by Work Group 4) and will continue as
part of our support for the project and commitment to standards and interoperability.

1. Development and standardisation of meta-CRM and FRBRoo.
Since the mappings in D4.2 draw their overall validity from the conceptual modelling of meta-CRM (for
type attributes) and FRBRoo (for specific media object models), Work Group 4 suggests CIDOC to revisit
these related working drafts in the light of the Indecs ontology, the existing Indecs-CRM harmonisation
work done in the VMF, and the four specific data standards discussed here, and ideally to produce
standard versions of these draft models to enable clearer modelling of commercial products within the
heritage data context. In particular, attention could be given to the concept of “object / work type” and
its relationship to the RDA/ONIX framework for content and carrier descriptions, as this feeds directly into
one of the core mandatory terms in LIDO.

2. Completion of LIDO mapping to CRM and enhancements to LIDO.
Another aspect of this data modelling convergence would focus on the semantic mapping of LIDO to the
CIDOC-CRM, which is required in any case for the modelling of linked data expressions of LIDO. This could
centre on key type vocabularies, especially those for actor roles, event types, and media, format and
genre classifications, which have already been extensively mapped in the VMF and are a point of contact
between the commercial and heritage bibliography communities.
The use of FRBRoo and metaCRM to map LIDO’s semantics has not so far been considered but we suggest
that it should be incorporated to give the maximum flexibility in future to applications of LIDO to data
both for commercial products and to other “type” entities in a variety of heritage contexts.

14.2.9 For Europeana

Europeana is the envisaged data publishing end point of key technical requirements of any large-scale
commercial data aggregation using these specifications. Work Group 4 will intensify its communication
with Europeana, including through the Europeana PPP Task Force, during the work towards D4.3, in order
to discuss these and other technical and legal-commercial requirements of commercial data providers.

1. Necessity of updates to Europeana data.
Since data to be published to Europeana may originate in the commercial sector, all data recipients,
including the MINT aggregator, but especially the end point, are expected to allow updates to whole and
part records. This may involve more frequent and larger-scale updates than Europeana currently deals
with.

2. Support for alternative presentation of data elements.
As already discussed in the context of MINT (see section 14.2.7), a basic consideration of commercial data
publication is the varied presentation requirements of media sectors and even individual data publishers.
Therefore WG4 recommends investigating more flexible ways of displaying data in the Europeana portal,
and possibly allowing aggregators and other data providers to upload their display options as part of the
data publishing process, as well as updating these in the same way as the data set itself.

 Page 128 of 326

LINKED HERITAGE
Deliverable D4.2

3. Europeana’s core aggregation schema.
As already noted in sections 4.3 and 5, there are serious concerns about the suitability of the (related) ESE
and EDM schemas to express existing heritage data, and there are further concerns about their use for
commercial data. There will be quality issues with linked data produced from EDM, becoming more
serious with each subsequent reuse of such datasets. Therefore EDM linked data may be unsuitable for
attracting commercial sector interest in Europeana’s linked data publications141.
Work Group 4 envisages that any commercial data aggregation at scale using the current schemas will
treat the Europeana schema mappings primarily in terms of selection and presentation of data elements
(which may be uniquely selected based on the data supplier), rather than a semantic transformation.
Therefore it is recommended that Europeana, given its commitment to attract data contributions from
publishers and other commercial organisations, adopt a more general and extensible schema, either
based on an existing standard like LIDO (which after all, unlike Dublin Core, was developed specifically for
describing Europeana’s objects of interest) or developed from a conceptual basis like CIDOC-CRM,
FRBRoo and Indecs (a starting point would be VMF which identifies areas of commonality and
complementarity across these models).

14.2.10 For EDItEUR and other commercial standards bodies

There are several small ways in which commercial data schemas could enhance their interoperability with
LIDO:

1. Add default language of record(s) element.
The LIDO schema expects a default language for the aggregated metadata at record level. It might be
useful, for international commercial use as much as for aggregation, to add similar information for
commercial product information. Alternatively, document the use of @xml:lang or best practice on use of
an element-level @language attribute.

2. Add expressions for licenses and usage terms for non-commercial “products”.
Another small step to assist interoperability might be to investigate explicit support for expressing non-
payment or otherwise non-commercial usage terms and licence offers in commercial data. This would go
beyond simple statement that a product is free of charge (which is already possible).

3. Create unique URIs for at least the controlled value sets (code lists) used in commercial schemas, and
consider a full URI set for the schema elements themselves.
This would enable binary classification mappings such as those in 8.5.2 here, and indeed all types of
classification mappings, to be machine-readable and most importantly, updated simulataneously with
updates to the code lists and schemas.

14.3 CLOSING EVALUATION

Completion of the ONIX for Books mapping specified in the Description of Work has confirmed many of
the initial concerns raised in D4.1 and the literature review for this report. However, it has resulted in
concrete and positive recommendations for the Linked Heritage consortium, Europeana and the wider
heritage data integration community, to be taken up should they wish to continue the attempt to
integrate commercial product information.

Given the complexity of their data models, book and recorded music data seem the least immediately
practical targets for integration at the current stage of development; far simpler would be to concentrate
on smaller scale aggregations of IPTC and EIDR data since, in both cases, the data model is simpler and
more compact, and the need for flexibility in the business model will be met since in any case,
agreements would need to be made on a direct basis with the data provider, who is either a central
registry in the case of EIDR, or likely to be an aggregator of many smaller providers and thus used to
normalising varied data to the IPTC fields.

141 “In practice, the quality of Linked data implementations is only as good as the data you are linking to,
and the meaning and contextualisation of the link you use… [Commercial sector data users will very likely
seek out] "curated data", i.e. consistent, managed, linking so you can link to other "quality data" with
confidence, while still using the standard Linked Data technologies.” See:
http://www.doi.org/doi_handbook/5_Applications.html#5.4

http://www.doi.org/doi_handbook/5_Applications.html#5.4

 Page 129 of 326

LINKED HERITAGE
Deliverable D4.2

With more knowledge of data providers’ requirements both for mapping to LIDO and for presentation of
data within Europeana, it should be possible to formulate rules for aggregating precisely specified
collections of product data for books and music as well; hence the remaining practical work towards D4.3
will focus on examining test and prototype data (see Appendix 5) together with publishers and data
providers, to develop a framework for adequately representing these complex product data formats in
the Europeana environment.

File: D4-2_Specification-of-technologies-chosen.docx Page 130 of 326

LINKED HERITAGE
Deliverable D4.2

15 REFERENCES

15.1 CITED IN THE REPORT

Adler, M. J. (1983). How to speak, how to listen. New York: Macmillan.

Adler, M. J., & Van, D. C. L. (1972). How to read a book. New York: Simon and Schuster.

Available at: http://webdoc.sub.gwdg.de/edoc/aw/d-lib/dlib/january99/bearman/01bearman.html

Bearman, D. et al. (1999). Progress report on reconciling metadata requirements from the Dublin Core
and INDECS/DOI Communities. D-Lib Magazine. 5(1).

Delmas-Glass, E. (2012). Using open source tools to expose cross-collection data in the LIDO schema;

Part I: LIDO at the Yale Center for British Art: modeling collection data for linked open data. CIDOC

Conference 2012 – Enriching Cultural Heritage, Helsinki, Finland. Available at:

http://www.cidoc2012.fi/en/File/1607/delmas.pdf

Doerr, M. (2010). Technological Choices of the ResearchSpace Project. [online]. Available at:

http://www.researchspace.org/researchspace-concepts/technological-choices-of-the-

researchspace-project [accessed December 2011].

Godby, C. J. (2012). A crosswalk from ONIX version 3.0 for books to MARC21. Available at

http://www.oclc.org/research/publications/library/2012/2012-04.pdf

Godby, C., Smith, D., and Childress, E. (2003). Two Paths to Interoperable Metadata. Paper presented
at the 2003 Dublin Core Conference, DC-2003: Supporting Communities of Discourse and Practice—
Metadata Research & Applications, September 28-October 2, in Seattle, Washington (USA). Available
online at http://www.oclc.org/research/publications/archive/2003/godby-dc2003.pdf

Godby, Carol Jean. 2010. Mapping ONIX to MARC. Report and crosswalk produced by OCLC Research.

Available online at: http://www.oclc.org/research/publications/library/2010/2010-14.pdf (report)

and http://www.oclc.org/research/publications/library/2010/2010-14a.xls (crosswalk).

Hopwood, M. (2012). Best Practice Report – Public Private Partnership. [Linked Heritage Deliverable
D4.1] Available at: http://www.linkedheritage.org/getFile.php?id=283

i2010: Digital Libraries High Level Expert Group – Copyright Subgroup. (2008). Final Report on

Digital Preservation, Orphan Works, and Out-of-Print Works. European Commission. Available at:

http://ec.europa.eu/information_society/activities/digital_libraries/doc/hleg/reports/copyright/co

pyright_subgroup_final_report_26508-clean171.pdf

ISO/DIS 25964-2, Information and documentation — Thesauri and interoperability with other

vocabularies — Part 2: Interoperability with other vocabularies

Magellan Media Consulting. (2012). The development, use and modification of book product metadata.

Available from http://www.bisg.org/publications/product.php?p=27

Miriam, J., & McGlinn, M. (2002). The trivium: The liberal arts of logic, grammar, and rhetoric :

understanding the nature and function of language. Philadelphia, PA: Paul Dry Books.

Nielsen Book Data. (2012). The Link Between Metadata and Sales. Available at

http://www.nielsenbookdata.co.uk/uploads/3971_Nielsen_Metadata_white_paper_A4(1).pdf

Stein, R. et al. (2005). Das CIDOC Conceptual Reference Model: Eine Hilfe für den Datenaustausch?
Mitteilungen und Berichte aus dem Institut für Museumskunde. SMB Staatliche Museen zu Berlin.

Tsalapati, E., Simou, N., Drosopoulos, N. and Stein, R. (2012). Evolving LIDO based aggregations into

Linked Data. CIDOC Conference, 2012 Helsinki. Available at

http://www.cidoc2012.fi/en/File/1663/simou.pdf

http://webdoc.sub.gwdg.de/edoc/aw/d-lib/dlib/january99/bearman/01bearman.html
http://www.cidoc2012.fi/en/File/1607/delmas.pdf
http://www.researchspace.org/researchspace-concepts/technological-choices-of-the-researchspace-project
http://www.researchspace.org/researchspace-concepts/technological-choices-of-the-researchspace-project
http://www.oclc.org/research/publications/library/2012/2012-04.pdf
http://www.oclc.org/research/publications/archive/2003/godby-dc2003.pdf
http://www.oclc.org/research/publications/library/2010/2010-14.pdf
http://www.oclc.org/research/publications/library/2010/2010-14a.xls
http://www.linkedheritage.org/getFile.php?id=283
http://ec.europa.eu/information_society/activities/digital_libraries/doc/hleg/reports/copyright/copyright_subgroup_final_report_26508-clean171.pdf
http://ec.europa.eu/information_society/activities/digital_libraries/doc/hleg/reports/copyright/copyright_subgroup_final_report_26508-clean171.pdf
http://www.bisg.org/publications/product.php?p=27
http://www.nielsenbookdata.co.uk/uploads/3971_Nielsen_Metadata_white_paper_A4(1).pdf
http://www.cidoc2012.fi/en/File/1663/simou.pdf

 Page 131 of 326

LINKED HERITAGE
Deliverable D4.2

van den Heuvel, C., & Rayward, W.. (2011). Facing interfaces: Paul Otlet's visualizations of data
integration. Journal of the American Society for Information Science and Technology., 62(12)., p2313.
(Document ID: 2511361761).

Weston, A. (2000). A rulebook for arguments. Indianapolis: Hackett Pub. Co.

15.2 INDICATED READING LIST

Bountouri, L., Papatheodorou, C., Soulikias, V., & Stratis, M.. (2009). Metadata interoperability in

public sector information. Journal of Information Science, 35(2), 204.

Diego Calvanese, D. & Giuseppe De Giacomo, G. (2005). Data Integration: A Logic-Based Perspective.
AI Magazine, 26(1), 59-70.

Campbell, D Grant, & Fast, Karl. (2001). The ontological perspectives of the Semantic Web and
metadata harvesting protocol: applications of metadata for improving Web search. Canadian Journal
of Information and Library Science, 26(4), 5-19.

Benjamin Carter, B. (2000). XML: Filling a data-description gap, part II. Journal of Database
Management, 11(2), 30-33.

Chung, C., et al.(1999). Knowledge and object-oriented approach for interoperability of heterogenous
information management systems. Journal of Database Management, 10(3), 13-25. (Document ID:
41798832).

Ding, H. (2005). Integrating semantic metadata in P2P-based digital libraries. Library Management,
26(4/5), 218-229.

Hao Ding, H. & Ingeborg Sølvberg, I. (2007). Rule-based metadata interoperation in heterogeneous

digital libraries. The Electronic Library, 25(2), 193-206. (Document ID: 1433332231).

Ding, Y., Jacob, E., Fried, M., Toma, I., Yan, E., Foo, S., & Milojevic, S.. et al. (2010). Upper tag ontology for

integrating social tagging data. Journal of the American Society for Information Science and

Technology, 61(3), 505.

Doerr, M. (2000).Mapping of the Dublin Core Element Set to the CIDOC CRM: Technical Report 274. ICS-
FORTH. Available at: http://www.cidoc-crm.org/docs/dc_to_crm_mapping.pdf

Dongwon, Jeong., Peter Hoh In, Fran Jarnjak, Young-Gab Kim, & Doo-Kwon Baik. et al. (2005). A
message conversion system, XML-based metadata semantics description language and metadata
repository. Journal of Information Science, 31(5), 394-406.

Gordon Dunsire, G. & Mirna Willer, M. (2011, March). Standard library metadata models and
structures for the Semantic Web. Library Hi Tech News, 28(3), 1-12.

Eulalia Roel. (2005). The MOSC Project: Using the OAI-PMH to Bridge Metadata Cultural Differences
across Museums, Archives, and Libraries. Information Technology and Libraries, 24(1), 22-24.

Joanne Evans, J., Barbara Reed, B. & Sue McKemmish, S. (2008). Interoperable data :Sustainable
frameworks for creating and managing recordkeeping metadata. Records Management Journal,
18(2), 115-129.

Hill, Linda L., Janee, Greg, Dolin, Ron, Frew, James, & Larsgaard, Mary. et al. (1999). Collection
metadata solutions for digital library applications. Journal of the American Society for Information
Science, 50(13), 1169-1181.

Senator Jeong, S. and Hong-Gee Kim, H. SEDE: An ontology for scholarly event description. Journal of

Information Science 2010 36: 209 originally published online 5 February 2010. DOI:

10.1177/0165551509358487

Lee, S., & Jacob, E.. (2011). An Integrated Approach to Metadata Interoperability. Library Resources &
Technical Services, 55(1), 17-32.

R. William Maule, R. (2011). "Cognitive maps, AI agents and personalized virtual environments in
Internet learning experiences. " Internet Research 8.4 (1998): 347. Web. 8 Dec. 2011.

Norm Medeiros, N. (2006). Metadata in a global world. OCLC Systems and Services, 22(2), 89-91.

http://www.cidoc-crm.org/docs/dc_to_crm_mapping.pdf

 Page 132 of 326

LINKED HERITAGE
Deliverable D4.2

Ron Miller, R. (2003, March). Get it together: Integrating data with XML. EContent, 26(3), 20-24.

Park, J., & Tosaka, Y.. (2010). Metadata Creation Practices in Digital Repositories and Collections:
Schemata, Selection Criteria, and Interoperability. Information Technology and Libraries, 29(3), 104-
116.

Pentaris, F., & Ioannidis, Y.. (2004). Mapping objects. International Journal on Digital Libraries, 4(1),
52-55.

Raths, D. (2008, April). Sharing data in a crisis-State and local groups work on interoperability. KM
World, 17(4), 16-17,29..

File: D4-2_Specification-of-technologies-chosen.docx Page 133 of 326

LINKED HERITAGE
Deliverable D4.2

16 APPENDIX 1 – GLOSSARY OF TERMS

Term Synonyms Definition (illustrative)

Attribute Property [but see
special use in 2.]

1. A characteristic of an entity;
2. XML: a data container attached to an element, with

no sub-containers.

CHO [cultural heritage
object]

Artefact, [art]
work, [museum]
object

The “provided” object of interest for Europeana and Linked
Heritage, described by a metadata record.

Class Type A set of entities completely defined by a list of shared
properties.

Collection Series, set A set of entities, not necessarily sharing any properties other
than membership of the collection as defined by some
authority such as a heritage institution or publisher.

Composite Data structure In ONIX: A structured grouping of data elements in an XML
data file or schema. The LIDO schema defines contains
composites normally with the suffix –Set or –Wrap in their
container element name.

Container [element] Structural
element [LIDO]

An XML element in a schema used only to hold other
elements.

Controlled value list /
controlled vocabulary /
terminology

Code list [ONIX] A list of terms and their meanings, usually also represented
by codes for brevity, which is maintained and developed,
often publically for shared use (like ONIX code lists, BIC and
BISAC subject headings) but sometimes internally to a
company.

In contrast to an XML schema’s element set, no formal data
structure is defined by a controlled value list, but some
logical relationships may be defined between (some of) the
terms.

Data element An XML element that directly contains data in the form of
text characters.

DO [digital object] Digital surrogate,
digital image,
resource

A digital image file representing the CHO in the Europeana
and Linked Heritage context.

Entity [with reference
to a specific data
schema]

Resource 1. Broadly, anything referred to by an identifier;
2. In schema mappings: a coherent, related set of

structural and data elements within a schema ([“an
ONIX entity”, “LIDO entities, etc.)], which potentially
could form the object of description in another data
record.

Expression 1. Information structured and defined by a particular
data schema (“an ONIX expression”);

2. FRBR and FRBRoo: a particular realisation or
version of a (purely) conceptual creative work;

3. indecs (i.e. ONIX, EIDR, DDex): a perceivable
creative work.

Instance [data] 1. Generally, a more concrete example of an abstract
class;

2. XML: a data file created according to a given
schema.

 Page 134 of 326

LINKED HERITAGE
Deliverable D4.2

Term Synonyms Definition (illustrative)

Life history Historical events relating to a CHO such that the CHO can
be considered somehow a document or witness to their
occurrence and interpretation.

Lifecycle Workflow Creative and industrial events resulting in the production of a
creative work.

Linked open data Semantic Web Publication of raw data on the World Wide Web, using HTTP
URIs to identify entities and providing links between them as
well as other data about them; an “open” licence for reuse of
the data was considered part of this method from its original
conception.

Manifestation A set of fixed items of a particular medium, format etc. that
make accessible a creative work. This has the same
meaning in FRBRoo and indecs data models.

Mapping Crosswalk Matching syntactic, semantic and possibly technical aspects
of two or more data models directly to each other.

Namespace XML: An identifier for a set of terms, linking their names to a
particular set of definitions to remove ambiguity.

Natural language Normal human language, written or spoken conversation or
discourse.

Normalise 1. Databases: organizing the fields and tables of a relational
database to ensure each piece of data is stored only once,
and that there are no internal inconsistencies in the data.

2. Aggregation: re-expressing many disparate data sets in a
standard format (e.g. LIDO).

Object [of interest] Resource; CHO;
product [type]

The stable, coherent entity described by a metadata record.
Can be perceivable (like a CHO) or conceptual (like a
product type).

Person/persona/
presentation
[name models]

Name Terms used to differentiate 1) a natural person having one
or more names; 2) their “names” – public identities; 3)
textual variants of each name.

Primitive semantics Definitions; The definition of a term in natural language, not
decomposed further for the purposes of the particular use.

Product Manifestation The set of functionally identical items that constitutes a
manifestation of creative expressions; examples are
publications, music and audiovisual releases; photographic
images.

Semantics Definitions;
denotation;
scope notes.

The meaning of a term, fixed by providing a context for its
interpretation, both positive (denotation) and
limiting/negative (scope), using either other defined terms, or
natural language (primitive semantics).

Serialisation XML: a format for providing structured information in a uni-
directional transfer between computers.

Set 1. ONIX: a closed collection of products;
2. LIDO: a composite comprising related elements

normally describing one entity or coherent aspect of
an entity.

Sub-element XML: an element contained within another element to form a
hierarchy. The sub-element could be another container or
could contain data (data element).

 Page 135 of 326

LINKED HERITAGE
Deliverable D4.2

Term Synonyms Definition (illustrative)

Subsumption Definition of terms by the total inclusion of their definition in
other, more general terms.

Typed [data] Data defined by a precise term. Definition can include the
type of encoding used to express the data as well as its
scope and denotation.

UML [Unified Modelling
Language]

 A comprehensive set of diagram conventions for modelling
systems. This report quotes several UML-like class
diagrams but only makes use of the aspects describing
hierarchies and cardinalities.

Wrap LIDO: a container for several sets of the same type of data,
but for distinct entities or aspects of entities.

XML [eXtensible
Markup Language]

 A syntax and grammar used to define structured documents.

XPath A language designed to reference entities of data within an
XML document, as well as specifying conditions, functions
and other operations on those entities.

XSD [XML Schema
Description]

XML Schema An XML language that prescribes the structure for XML
documents.

XSLT [XML StyLe Sheet
Transformations]

XSL An XML language used to define transformations of one
type of XML document to another.

File: D4-2_Specification-of-technologies-chosen.docx Page 136 of 326

LINKED HERITAGE
Deliverable D4.2

17 APPENDIX 2 – MAPPING COMMERCIAL DATA TO CULTURAL
HERITAGE SCHEMAS

This appendix details technical issues arising from the problem of integrating data that originates in two
complementary but very different sectors. The issues are presented here in order of decreasing
abstraction, going from the very general to the more specific, and possible solutions will be highlighted in
each case.

17.1 DIFFERENT KINDS OF ENTITY DESCRIBED BY COMMERCIAL SECTOR AND
HERITAGE SECTOR DATA

The main problem in mapping from commercial sector data to cultural heritage schemas is that the
primary entities described are different in each scheme. This is explained in detail in D4.1. The
commercial sector is centred on generic products which can be sold in many instances once created;
these are abstract entities called “manifestations”, consisting of the relevant characteristics of all
functionally identical

142
 products. As explained by Paskin (2004), “[w]e can always add another attribute

to make two “like” things “unlike”… No set of metadata elements is definitive for all purposes… For a
machine, “for the purpose of” = “class having this set of attributes””.

This type of identification process is used for the registration of product in identifier registries such as
ISBN agencies, the EIDR registry and ISWC and ISRC registries. The set of attributes used to ensure that
duplicate products are not registered with the same identifier, its reference descriptive metadata143 is
illustrative of the requirements for unambiguous identification within the relevant content sector. Once
the product information is released beyond the “curatorial environment” of the product’s originating
company, these attributes make the product recognisable for the whole supply chain.

Note that as per the FRBRoo analysis, the attributes of a product, as reproduced at industrial scale, are
specified based on an exemplary “proof” of the final product design (F4 Manifestation Singleton) plus the
contribution of the publisher (F24 Publication Expression) and are predicated of the individual items
reproduced by a standardised process only in the sense that all items identified as being “this product”

142

 That is, identical for the purposes of identification within the supply chain; see Paskin, N. (2004).
143 See ISO TC46 SC9. (2006). Use cases for interoperability of ISO TC46 SC9 identifiers. Available at
http://www.collectionscanada.gc.ca/iso/tc46sc9/docs/sc9n417.pdf

http://www.collectionscanada.gc.ca/iso/tc46sc9/docs/sc9n417.pdf

 Page 137 of 326

LINKED HERITAGE
Deliverable D4.2

should have those properties inherited by the class (F3 Manifestation Product Type). This stage of the
FRBRoo analysis is characteristically kept within the commercial sector publishing organisation(s) and is
effectively opaque to the heritage sector. See the diagram below for the full process of defining the
Product Type.

FRBR object-oriented model: relating expression and publication (manifestation)

The final step of the FRBRoo model above explains the process of cataloguing the product based on one
item, or instance of the product type. This is a point of contact between the heritage and commercial
sectors, especially since in the networked environment, current business research and best practice
indicate that “item in hand” inspection and correction of metadata is essential; the kind of resource-
based cataloguing that libraries carry out has been explicitly recognised as useful for the publishing
metadata supply chain144. In practise in the heritage world, cataloguing will happen as one discreet step,
as shown in FRBRoo; in commercial contexts metadata will be built up throughout the supply chain (see
D4.1, section 5.3.4).

The next diagram from FRBRoo shows both how the two Manifestation entities relate to Items
corresponding to actual copies of e.g. a published book, movie release on DVD or download, music or
photo file:

144 See Magellan Media Consulting, 2012.

 Page 138 of 326

LINKED HERITAGE
Deliverable D4.2

FRBR object-oriented model: event description of publication based on a creative expression

Note that here, the F3 Manifestation Product Type refers to a conceptual class (“types” are simply meta-
CRM lists of properties), whereas the F5 Item class is a class of individual physical copies of the book, film,
recording or photo. Contrast this with the apparently ambiguous treatment of “Manifestation” in indecs,
where it appears to be the aggregate set or collection of all the items:

 Page 139 of 326

LINKED HERITAGE
Deliverable D4.2

indecs model of creative expressions, manifestations, and abstractions derived from them both

This is a convenient optimisation (flattening, or denormalisation) commonly used in metadata formats for
mass-produced creative content where the item in hand typically inherits almost all properties of interest
from its product type. In the case of ONIX for Books, this is clearly seen when an ONIX record is expressed
as RDF by making explicit each entity and relation. In the illustrative RDF/XML below145, it can be seen
that the “product” itself is identified by the ONIX <RecordReference> which is then linked to any
published identifiers the book may have (in this case, an ISBN). The missing link in this chain of data is
simply the meta-CRM statement linked to a declaration that this is a product type, rather than a
collection of specific (albeit functionally identical) items.

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:onix="http://ns.editeur.org/onix/3.0/reference/">

 <rdf:Description rdf:nodeID="uk.co.harpercollins.onix.product.40366">

 <onix:ProductIdentifier rdf:datatype="http://ns.editeur.org/onix/codelists/5#15">

 9780007232833</onix:ProductIdentifier>

 <onix:ProductForm rdf:resource="http://ns.editeur.org/onix/codelists/150#BC" />

 <onix:Contributor>

 <rdf:Description onix:PersonNameInverted="Sjöwall, Maj">
<onix:ContributorRole rdf:resource="http://ns.editeur.org/onix/codelists/17#A01" />

 <onix:NameIdentifier
rdf:datatype="http://ns.editeur.org/onix/codelists/44#16">0000000121479135</onix:NameIdentifier>

145 Example RDF/XML for illustrative purposes only. Taken from presentation by Bell, G. (2012).

 Page 140 of 326

LINKED HERITAGE
Deliverable D4.2

 </rdf:Description>

 </onix:Contributor>

 </rdf:Description>

</rdf:RDF>

This type of optimisation is by no means unique to commercial sector metadata. In fact, it is identically
used in MaRC to describe books, where they are equally interesting for their F2 Expression(s), F24
Publication Expression (together corresponding to the FRBR and ONIX Manifestation), but also F5 Item, as
in the diagram below.

Comparison of FRBR (library cataloguing) and indecs (commercial product information) views of books

However, to integrate information about books on the fringes of the “uniqueness spectrum” (see D4.1,
section 4.3), such as rare books and special collections, libraries may have difficulties with the MaRC and
cataloguing rules paradigm, because it does not always integrate the more dynamic modelling expressed
to some degree in ONIX (as shown by the separation of manifestation into expression and fixation
processes) and more fully for individual items in the CIDOC-CRM.

 Page 141 of 326

LINKED HERITAGE
Deliverable D4.2

In contrast, the cultural heritage sector primarily documents unique objects and their provenance:

Fundamental differences in heritage and commercial sector data models: item versus class description

In the above diagram, note that all of the blue boxes represent objects that are to the book trade
substitutable except for their actual location, price, ownership and so forth (e.g. a particular book). Any of
the product numbered items on the right is replaceable or substitutable with any of the other identical
products in the “pile”. The precise historical events that led up to these functionally identical books being
available (authoring, publishing, printing, distribution, retail) is almost totally irrelevant to the reader;
only the “content” matters. Perhaps some slight differences in the physical condition of the item affect
the price but these are not considered part of the standard product; it is primarily a means of getting the
content to the reader. This represents the commercial data view.

On the left, the unique single copy of the product (placed on a pedestal) represents the cultural heritage
view; this item is the entity being described, including any “defects” that distinguish it from the otherwise
identical objects on the right, and the provenance of the item, its history, is a central aspect:

“A cultural-historical research space… provides access to primary knowledge about objects and in archival
material. This information is prior to having a subject in the library sense. A museum object is more like
an illustration or witness of the past, than information in its own right.” (Doerr, 2010).

So, in the case that the blue boxes represent a book, the “content” of the book is, in the cultural heritage
view secondary, or at least, on the same level of interest as the unique historical journey this copy took in
reaching our observer. In this case, the item is numbered and identified as an item, not a representative
of a class, and is not replaceable by another similar item.

Of course this comparison uses extreme cases to make a point; rare or limited print-run books (for
example) are often more or less unique. Museums do collect many items that are not entirely unique. The
general difference in focus holds for the normal case in each sector

146
.

17.1.1 Solutions – exemplary item cataloguing or class property mapping?

The simplest and most obvious solution is to map the properties that belong to the manifestation to a
schema describing a hypothetical, exemplary item (which could in theory exist, selected arbitrarily from
the pile of identical objects in the above diagram and “put on a pedestal” as a representative of its class!).
The only condition would be that it represents all the necessary characteristics needed to belong to the
manifestation, and no less (a fair assumption given the commercial, mass-production context and

146

 In the music sector especially, the problem could in principle become even more complex because
abstract “release” (content listing or manifest) entities can be described for a range of different but
strongly related products.

 Page 142 of 326

LINKED HERITAGE
Deliverable D4.2

reasonable level of curation and preservation of the individual item). In fact, this concept already exists in
FRBR(oo)147. Something like this approximation takes place in reverse when an ONIX record is used as the
basis for a MaRC catalogue record, before the item-in-hand check is done on the exemplary copy.
However, this approach is only applicable in the context of actual repository collections of items, such as
libraries and film archives. It does not fully address the need to ingest product data originating directly
from the commercial sector.

The approach taken in this report, after experimenting with many examples of product data and exploring
the capacity of the LIDO schema and its related data models in the CIDOC-FRBR domains, was to
recommend the use of a LIDO-CRM mapping based on the class properties introduced by the FRBRoo and
meta-CRM working drafts. The LIDO schema already allows for such use in its inclusion of the record
category field, which in principle could take values from both the physical and conceptual sides of the
CIDOC-CRM and hence include F3 Manifestation Product Type. When this category is selected for the
LIDO record, the LIDO elements should be interpreted as referring to class properties inherited from the
F2 Expression(s) and F24 Publication Expression, with the inclusion of this extra triple in each CRM
expression (but otherwise identical to the semantics of a LIDO record for the item – minus any
distinguishing features, of course!).

Note that this report has experimented and made recommendations on the basis of the available tools
and frameworks – principally LIDO and MINT. Significant extensions and developments to both of these
have been recommended. Given further scope and resources it would be possible to adopt more general
methods such as building on the work of VMF to model common properties of commercial products
relevant to the specific use case(s).

17.2 RELATIVE FREQUENCY OF TRANSACTIONS IN EACH SECTOR

A second, related difference between the commercial and cultural heritage sectors is the relative
frequency of transactions, or more generally, events involving the objects involved. This is due to the
relative value placed on items in themselves and as witnesses to events (provenance), versus their value
as carriers of information content. Thus instead of details of the finding, collection and (perhaps a few)
transfers of custodianship) in the heritage sector, one finds details of the intellectual property
rightsholder(s), potential markets where sales are licensed, suppliers who make the product available to
end customers, and links to order or directly access content – and in each case, there are likely many,
rather than few.

This difference is important for the Linked Heritage use case primarily because whereas a heritage object
is normally held in custody and curated by one and the same institution, analogously a commercial
product may be available for retail from a number of suppliers, including the publisher themselves. It is
not immediately clear who is the “curator” of the product itself, as in practice, the object of interest for
trade offers and agreements is, at least early in the supply chain, a right or license regarding the
intellectual content of the product (supply of physical items is somewhat distinct from this). The one fixed
(category of) rightsholder may be the creator(s) themselves – however, even this distinction can vary
depending on a given jurisdiction’s balance of statutory and contractual rights.

Because of this, aggregating product data in a heritage context simultaneous offers more and less
“access” to the product. More, because as well as linking to information about the product in context
from its metadata, previews, extracts and the product itself may be obtained. Less, because in order to
provide this link it is necessary to impose the somewhat artificial concept of a product “repository” on the
data, which may impede the business case for any data contribution at all. Here the interdependence of
rights and descriptive metadata becomes clear148. The territoriality of retail sales rights is also in play here
– some retailers will not be able to offer a product to customers in certain geographic locations, and will
not wish their products to be advertised through metadata to those customers, or not without a
disclaimer. Neither Europeana nor the LIDO / MINT infrastructure currently support such sensitivity
automatically.

147

 F4 Manifestation Singleton: R42 is representative manifestation singleton for: F2 Expression (see
Bekiari, Doerr and LeBoeuf, 2009; pp125-127).
148 For a full discussion see Rust, 1998. The key passage is found at this link:
http://www.dlib.org/dlib/july98/rust/07rust.html#dependence_of_rights_metadata

http://www.dlib.org/dlib/july98/rust/07rust.html#dependence_of_rights_metadata

 Page 143 of 326

LINKED HERITAGE
Deliverable D4.2

In the Europeana aggregation schema, a maximum of one link is allowed to a Web page for the Digital
Object (the image of the Cultural Heritage Object in context).149 The choice of publisher or retailer link to
map to this element is unclear and will depend partly on non-technical, legal and commercial factors.
Hence a fuller discussion of this point will appear in D4.3. However, in the LIDO format, multiple
repositories can be specified, and multiple links to a data sheet describing the object are also allowed.
This is the part of LIDO used to map such retail links here, with a preference for the publisher or other
releasing company, since it is closer to the “origin” of the product. However, this does not solve the
problem above since in practice retail links may not be offered by publishers and the question of which
retail channel to prefer remains.

17.2.1 Solutions – multiple resolution or planned future events?

Allowing multiple access points or “repositories” for each product is a partial solution. Ultimately a new
approach will be required to resolve the need to fully reflect the commercial nature of the product
information aggregated here. Some existing tools and services point towards possible long-term
solutions:

 Multiple resolution services like the ISBN-A.
One way to short-cut the problem of selection one “repository” for a product would be to use an
intermediary resolution service like that offered by ISBN-A (as described in D4.1, section 6.3.5).

 Aggregation of sales offers via affiliates.
In D4.1 section 8.2.4 the UK service Findanyfilm.com was described. This website aggregates
descriptive metadata about films, actors, and directors, and also collates cinema release and
retail recording availability information with links to book tickets or buy recordings. These links
are provided by third-party affiliate services that independently aggregate offers from a range of
partners, updating and managing the legal and commercial aspects. This type of solution would
potentially integrate with a multiple resolution service like ISBN-A; otherwise it would be
necessary to reproduce this functionality within the aggregator platform along with other types
of updates.

 Extension of data integration schema to include planned events.
In the case that retail link management were managed within the central data aggregator, the
core data model would need to be extended to explicitly include planned future events. These
represent the “offers” common in commercial metadata and could perhaps be modelled in two
distinct ways:

o As CIDOC-CRM E29 Plan entities implemented somehow in a new extension the LIDO
schema. The E29 Plan would represent an intermediate stage between the product
itself and the planned sale event, based on the existing event structure in LIDO.
However, since the sale of items is based on instances of the product, not the product
itself, the semantic chain behind this structure would be long and complex (though
perhaps not necessarily seen in the LIDO extension itself). Also, to model e.g. ebook
usage constraints it might be necessary to add an extra “rights acquisition” event type
with added sub-events to describe categories of allowed activity (viewing, downloading,
printing, lending etc.). The same would apply to other digital assets.

o The sale could be modelled simply as an event within the product information itself,
with the semantic mapping taken from meta-CRM to indicate this event “should” or
“usually” takes place. Usage rights information for electronic products would still need
to be modelled as sub-events.

 Integrate within existing ecommerce and rights data frameworks.
As mentioned above, categories of use for ebooks and other digital products are best modelled
in terms of rights to perform certain activities in relation to the product. In the most general
analysis, for traditional analogue media too, sales and use (for example, format shifting or
copying) can be modelled this way. One current cross-media project, the Linked Content
Coalition, aims to make integration of rights information from any content sector interoperable
and enable more automated transactions150. This framework would potentially support the data

149

ESE V3.4 schema available at http://pro.europeana.eu/documents/900548/dc80802e-6efb-4127-a98e-
c27c95396d57
150 For full details of the LCC see http://www.linkedcontentcoalition.org/The_Project.html

http://pro.europeana.eu/documents/900548/dc80802e-6efb-4127-a98e-c27c95396d57
http://pro.europeana.eu/documents/900548/dc80802e-6efb-4127-a98e-c27c95396d57
http://www.linkedcontentcoalition.org/The_Project.html

 Page 144 of 326

LINKED HERITAGE
Deliverable D4.2

modelling needed for expressing sales offers within LIDO, and also perhaps assist with
aggregating affiliate links via a partner service. Some of the use cases examined by the LCC151
overlap with the need to provide commercially acceptable technical solutions within a product
data aggregation context.

17.2.2 Modelling note – publisher as “repository” for product type?

It should be noted that the most obvious default for the “repository” of a product type is the publisher,
and thus probably in the absence of a dynamic solution like those outlined above, publisher information
should be chosen for this part of any mappings to cultural heritage formats. The publisher or other
“releasing” company is usually (though not always) the registrant of the product for identification
purposes, and what is registered is actually the product type information, or some minimum subset
thereof. Publishers do not always act as commercial sources for their products, appointing distributors to
deal with retail or wholesale enquiries; however, as maintainers of the primary product information as it
relates to the identification of a unique product, all the other supply chain partners are depend on them.

17.3 SEMI-STATIC ARCHIVES OR DYNAMIC DATAFLOWS

Third, partly because of the difference in transaction frequency noted, but also for many other legal and
commercial reasons, the concept of a “dataset” in the two viewpoints is substantially different.

Whereas in the heritage sector events involving the object of interest are viewed with academic
detachment and possibly documented by one curator several times drawing on sources with alternate
viewpoints of the same event, in the commercial world, the documentation of events is much more
focussed on accounting for transactions involving the “curator” of the data at that point in the supply
chain. So, not only may one record for a given product include data contributed by various partners in a
supply chain, there may also be divergent or contradictory records for the same product, even if the
records are produced simultaneously. These are not of scholarly or cultural interest; instead, business
rules will be applied to produce a single authoritative product record for use in transactions.

Types of update message may include:

 Change of status;

 Changes of descriptive detail;

 Changes in marketing collateral;

 Changes in copyright ownership, sales rights and price;

 Change in publishing rights;

 Change in retail rights;

 Corrections to any of the above;

 Deletion of the record.

Indicators for the update notification type may occur within the message itself, and so be treated by a
straightforward aggregator as simply another piece of data, even if they are intended as triggers for
processing or requesting other messages. This also means that it will only be possible to directly map a
subset of possible messages, as some combinations of elements will likely not occur in straightforward
notification messages.

151

 See use cases summary at
http://www.linkedcontentcoalition.org/uploads/EPC_Big_Idea_The_Answer_to_the_Machine_UseCases.
pdf

http://www.linkedcontentcoalition.org/uploads/EPC_Big_Idea_The_Answer_to_the_Machine_UseCases.pdf
http://www.linkedcontentcoalition.org/uploads/EPC_Big_Idea_The_Answer_to_the_Machine_UseCases.pdf

 Page 145 of 326

LINKED HERITAGE
Deliverable D4.2

17.3.1 Solution – business rules and revised technical platform?

As noted above, integration of sales rights and retail availability would require significant development of
the data model and aggregator software. Part of this development would certainly include the facility to
receive and integrate updates to metadata records, and apply business rules (beyond validating received
updates against the message schema) to distinguish between contradictory information for the same
product (for example, testing against dates for valid use of book or DVD cover photos; territorial
restrictions on sales rights; “windowing” releases of recordings in different formats and territories
depending on dates, and with different marketing collateral and localised titles).

File: D4-2_Specification-of-technologies-chosen.docx Page 146 of 326

LINKED HERITAGE
Deliverable D4.2

18 APPENDIX 3 –CIDOC-CRM AND FRBROO MODELS FOR PRODUCTS

From an email on Wed, 4 Jan 2012 from Patrick Le Boeuf to the CRM Special Interest Group mailing list.
The expressions below are in the form of “sentences” which typically consist of an entity (code beginning
F or E) linked to another entity via a relator or property (with a code starting P, R or CLR). More examples
are found in the CIDOC-CRM and FRBRoo documentation found at http://www.cidoc-crm.org/

“Yes, it is quite possible to use a combination of FRBRoo and CIDOC CRM to model commercially available
reproductions of unique objects. Possible paths include:

a) "replicas of iconic artefacts:"

E22 Man-Made Object [= the reproduced unique artefact] P16B was used for(P16.1 mode of use: E55
Type {source for reproduction}) F30 Publication Event.

F30 Publication Event R24 created F24 Publication Expression [= the set of signs present on the
commercial product, including its packaging].

F24 Publication Expression CLR6B should be carried by F3 Manifestation Product Type [= the commercial
product].

F24 Publication Expression P130 shows features of (P130.1 kind of similarity: E55 Type {commercialized
replica}) E22 Man-Made Object [= the reproduced unique artefact].

F24 Publication Expression R27B was used by F32 Carrier Production Event [= the industrial process
through which all individual exemplars of the product are made].

F32 Carrier Production Event R28 produced F5 Item [= each individual physical exemplar of the
commercial product].

b) "prints of photos of paintings:"

E22 Man-Made Object [= the photographed painting] P16B was used for (P16.1 mode of use: E55 Type
{photographed item}) F29 Recording Event.

F29 Recording Event P2 has type E55 Type {making photographs}.

F29 Recording Event R21 created F26 Recording [= the set of signs present on the photograph of the
painting that was used as source for the publication].

R26 Recording P2 has type E55 Type {photograph}.

F26 Recording R14B is incorporated in F24 Publication Expression [= the set of signs present on the
commercial product, including its packaging].

F24 Publication Expression CLR6B should be carried by F3 Manifestation Product Type [= the commercial
product].

F24 Publication Expression P130 shows features of (P130.1 kind of

similarity: E55 Type {commercialized photograph}) E22 Man-Made Object [= the photographed painting].

F24 Publication Expression R27B was used by F32 Carrier Production Event [= the industrial process
through which all individual exemplars of the product are made].

F32 Carrier Production Event R28 produced F5 Item [= each individual physical exemplar of the
commercial product].

c) "compilations of sound recordings from archives:"

F26 Recording [= the content of sound archives] R14B is incorporated in F24 Publication Expression [= the
set of signs present on the commercial product, including its packaging].

F24 Publication Expression R27B was used by F32 Carrier Production Event [= the industrial process
through which all individual exemplars of the product are made].

 Page 147 of 326

LINKED HERITAGE
Deliverable D4.2

F32 Carrier Production Event R28 produced F5 Item [= each individual physical exemplar of the
commercial product].

d) Exhibition catalogues and educational DVDs are modelled exactly the same way as any book and any
DVD, see FRBRoo.

File: D4-2_Specification-of-technologies-chosen.docx Page 148 of 326

LINKED HERITAGE
Deliverable D4.2

19 APPENDIX 4 – ONIX FOR BOOKS 3.0 TO LIDO MAPPING

The table presented here lists only the XSLT for the main element and attribute mappings. There are 86 value “maps” within the full XSLT which almost all reproduce entire
ONIX for Books code lists

152
 (some only use parts where relevant) for mapping codes to concept labels. Examples of these “maps” are shown in the body of the report

where relevant. The full XSLT file published with this report contains all of the full implementable value mappings. Eventually these internal XSLT value mappings should be
replaced by SKOS integration via the TMP.

The XSLT below is presented almost exactly as output from the MINT platform. Linked Heritage partners and others who wish to examine the mapping in MINT can request
permission to receive access from EDItEUR. The XSLT below has occasionally edited to remove whitespace (especially around sequences of element-closing tags) or
truncated to schematically represent whole sections of the mapping structure with representative top-level tags (as in the discussion of LIDO in section 8). The listing has
been distributed across the table below sometimes pragmatically by section length, and as often as possible, to follow the logical structure of the XSLT templates, but
always following the LIDO schema outline structure.

19.1 READING SYNTACTIC AND CONDITIONAL MAPPINGS IN XSLT

At first glance the XLST below appears very complex, but despite its extreme length it uses only a small number of the possible XSLT elements, and most repeats the same
combinations of these elements.

19.2 XSLT VARIABLES USED TO REPRESENT ONIX CODE LISTS

As noted in section 9.2, fixed XSLT variable “maps” are used to represent each single occurrence of an ONIX code list in the mapping script. This table relates the maps to
code lists they originate in and notes where and why a list is used for many “map” variables. A large number of the code lists are used precisely twice because they classify
not only the direct object of description but also the related product (LIDO “work/object”).

“Map”
number

ONIX Code
list

Comments

0 5 Product identifier type code – “00” (proprietary) not included as not a published ID.

2 78

4 150 Product form – used as lido:objectWorkType and lido:classification map.

6 150

8 175 Product form detail – used as lido:objectWorkType and lido:classification map.

152 See http://www.editeur.org/ONIX/book/codelists/current.html for the full set of ONIX code lists.

http://www.editeur.org/ONIX/book/codelists/current.html

 Page 149 of 326

LINKED HERITAGE
Deliverable D4.2

“Map”
number

ONIX Code
list

Comments

10 81

12 91 Country code – used for all LIDO elements requiring country.

14 148

16 121

18 74

20 28

22 31

24 30

26 29

28 28

30 81

32 152

34 21

36 79

38 98

40 98

42 99

44 76

46 176

48 196

50 140

 Page 150 of 326

LINKED HERITAGE
Deliverable D4.2

“Map”
number

ONIX Code
list

Comments

52 148

54 79

56 2 Product composition – used for lido:classification and lido:recordType.

58 33

60 79

62 153

64 25

66 48

68 48

70 50

72 44 Name code type – used for all instances of lido:actorID and legalBodyID.

74 18 Name / organisation type – used for all instances of lido:nameActor.

76 18

78 18

80 18

82 18

84 18

86 18

88 18

90 18

92 18

 Page 151 of 326

LINKED HERITAGE
Deliverable D4.2

“Map”
number

ONIX Code
list

Comments

94 18

96 151 Contributor place relator – used to select content for lido:nationalityActor.

98 151

100 49

102 91

104 151

106 17

108 33

110 155 Content date role – partly used to specify @lido:type for related content dates.

112 155

114 156

116 41

118 91

120 44

122 45

124 44

126 91

128 44

130 26

132 26

134 13

 Page 152 of 326

LINKED HERITAGE
Deliverable D4.2

“Map”
number

ONIX Code
list

Comments

136 148

138 5

140 98

142 98

144 99

146 76

148 176

150 196

152 140

154 184

156 5

158 178

160 150

162 51

164 5

166 164

168 2

170 44

172 44

174 44

 Page 153 of 326

LINKED HERITAGE
Deliverable D4.2

19.3 ONIX 3.0.1 TO LIDO MAPPING: FULL XSLT SCRIPT

LIDO
section

LIDO
subsection

XSLT Comments

Template lidoWrap <xsl:template match="/">

 <lido:lidoWrap>

 <xsl:apply-templates select="/onix:ONIXMessage/onix:Product"/>

 </lido:lidoWrap>

 </xsl:template>

<xsl:template match="/onix:ONIXMessage/onix:Product">

 <lido:lido> … [rest of XSLT here!] … </lido:lido>

The lidoWrap acts like
an <ONIXMessage>
wrapper for many lido
records, one per ONIX
product record (mapped
from the <Product>
element) as shown by
the illustrative elements
in bold. Templates are
applied to each
<onix:Product> and the
<lido:lido> record is also
generated at this level.

Template @relateden
coding

<xsl:attribute
name="lido:relatedencoding">http://ns.editeur.org/onix/3.0/reference</xsl:attribute>

The (currently) fictitious
URI for the ONIX for
Books namespace is
used to specify the
original schema of this
data. This may be
updated with a release
of the ONIX properties
as URIs.

 lidoRecID <lido:lidoRecID>

 <xsl:attribute name="lido:type">LINKED HERITAGE</xsl:attribute>LINKED
HERITAGE:000000</lido:lidoRecID>

This ID is generated
automatically as an
identifier for the new
aggregator record in
LIDO. The ONIX record
sender’s original
identifier for the input
record is captured in the
lido:recordWrap later in
the mapping.

 Page 154 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 objectPubli
shedID

 <xsl:for-each select="onix:ProductIdentifier/onix:IDValue">

 <lido:objectPublishedID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:ProductIDType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx1" select="index-of($map0/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx1 > 0">

 <xsl:value-of select="$map0/map[$idx1]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-
each></xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectPublishedID>

 </xsl:for-each>

This part of the lido:lido
section creates one
<lido:objectPublishedID>
for every
onix:ProductIdentifier/oni
x:IDValue. This enables
multiple “object”
identifiers per lido
record, corresponding
exactly to the situation in
ONIX.

The lido:type attribute is
generated from the
<ProductIDType> code
in the same composite
by transforming the code
using map0, a list of
registered ID types (see
section 6.4.3 for full
description of this map).

 Page 155 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 category <lido:category>

 <lido:conceptID>

 <xsl:attribute name="lido:type">URI</xsl:attribute>http://www.cidoc-
crm.org/crm-concepts/F3</lido:conceptID>

 <lido:term>

 <xsl:attribute name="lido:addedSearchTerm">no</xsl:attribute>F3
Manifestation Product Type</lido:term>

 </lido:category>

This element is used to
specify the type of
CIDOC-CRM entity
described by the lido
record.

This report recommends
that this value for the
lido:conceptID here
should be used to trigger
the (proposed) F3
Manifestation Product
Type CRM mapping for
the LIDO elements,
transforming the LIDO
record into a description
of an identifiable
conceptual class with
inherited type properties,
rather than a unique
physical object (see
Appendix 2, section 18
for a full discussion).

 Page 156 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 [default
languages]

 <lido:descriptiveMetadata>

 <xsl:attribute name="xml:lang">en</xsl:attribute>

… [rest of lido section] … <lido:descriptiveMetadata>

 <lido:administrativeMetadata>

 <xsl:attribute name="xml:lang">en</xsl:attribute>

… [rest of lido section] … </lido:administrativeMetadata>

These attributes actually
appear at the relevant
places in the overall
XSLT template. They are
included here because
MINT allows them to be
set at the “template”
level.

Here the default
language is set to
English, but in ONIX this
is left unspecified. This
report recommends
MINT be developed to
allow this attribute to be
set for each input file
upload.

Classificati
on

Work Type <lido:objectWorkTypeWrap>

 Page 157 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:ProductFormDetail">

 <lido:objectWorkType>

 <xsl:attribute name="lido:sortorder">1</xsl:attribute>

 <xsl:for-each select=".">

 <lido:conceptID>

 <xsl:attribute name="lido:type">local</xsl:attribute>

 <xsl:attribute name="lido:label">Product form detail
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 <xsl:for-each select=".">

 <xsl:variable name="idx3" select="index-of($map2/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx3 > 0">

 <lido:term>

 <xsl:value-of select="$map2/map[$idx3]/@value"/>

 </lido:term>

 </xsl:when>

<ProductFormDetail>
tends to contain far more
specific details than
<ProductForm> below,
however, it is not
mandatory as
<ProductForm> is.
Therefore it was mapped
as an additional LIDO
WorkType along with
<ProductForm>.

Using the
@lido:sortorder attribute
it was possible to specify
that it is preferred
whenever it appears.

 Page 158 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Product form
detail</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </lido:objectWorkType>

 </xsl:for-each>

 Page 159 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:ProductForm">

 <lido:objectWorkType>

 <xsl:attribute name="lido:sortorder">2</xsl:attribute>

 <xsl:for-each select=".">

 <lido:conceptID>

 <xsl:attribute name="lido:type">local</xsl:attribute>

 <xsl:attribute name="lido:label">Product form
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 <xsl:for-each select=".">

 <xsl:variable name="idx5" select="index-of($map4/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx5 > 0">

 <lido:term>

 <xsl:value-of select="$map4/map[$idx5]/@value"/>

 </lido:term>

ONIX ProductForm is
used for the more
familiarly-named product
categories, and is
mandatory for all ONIX
records.

Although this source
term is mandatory, in the
LIDO output it is less
important that the more
specific ONIX
ProductFormDetail so
this term only maps with
a @lido:sortorder of 2.

 Page 160 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Product
form</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:when>

 </xsl:for-each>

 </lido:objectWorkType>

 </xsl:for-each>

 </lido:objectWorkTypeWrap>

Classificati
on

Classificati
on

<lido:objectClassificationWrap>

 Page 161 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 Classificati
on

 <lido:classification>

 <xsl:attribute name="lido:type">europeana:type</xsl:attribute>

 <xsl:if test="(onix:DescriptiveDetail/onix:PrimaryContentType = '07')
or (onix:DescriptiveDetail/onix:PrimaryContentType = '18') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '19') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '20') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '12')">

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>IMAGE</lido:term>

 </xsl:if>

The first of four
conditional mappings
that select one of the
Europeana media types.
Here are the conditions
for “IMAGE”.

These four all select on
ONIX
PrimaryContentType
which is specified for use
in describing ebooks.

See the final conditional
mapping below for
“TEXT” to see the
default type, which is
also assumed for print
books.

 Classificati
on

 <xsl:if test="(onix:DescriptiveDetail/onix:PrimaryContentType = '01')
or (onix:DescriptiveDetail/onix:PrimaryContentType = '02') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '13') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '03') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '04') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '21') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '22') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '23')">

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>SOUND</lido:term>

 </xsl:if>

The code list values
used for the four
Europeana media type
mappings follow the
order of presentation of
the entries in ONIX code
list 81, which is grouped
according to these four
same general types,
even though the
numerical codes
themselves have a
slightly different order.
This is convenient, but
also adds authority to
this selection.

 Page 162 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 Classificati
on

 <xsl:if test="(onix:DescriptiveDetail/onix:PrimaryContentType = '06')
or (onix:DescriptiveDetail/onix:PrimaryContentType = '26') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '27') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '24') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '25') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '28') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '29') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '30') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '31')">

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>VIDEO</lido:term>

 </xsl:if>

Note that the map of
code list 81 does not
include codes for
interactive content, such
as games, or
advertising, found
grouped together at the
end of the list.

 Classificati
on

 <xsl:if test="(not(onix:DescriptiveDetail/onix:PrimaryContentType)) or
(onix:DescriptiveDetail/onix:PrimaryContentType = '10') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '15') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '14') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '16') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '17') or
(onix:DescriptiveDetail/onix:PrimaryContentType = '11')">

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>TEXT</lido:term>

 </xsl:if>

 </lido:classification>

This sets the default
“TEXT” value if either
there is no
<PrimaryContentType>
(the most likely case if
the record is not for an
ebook) or if the content
type is one of the textual
types.

As one main focus of
ONIX 3.0 was the move
towards ebooks, it
seemed essential to
include this mapping.

 Page 163 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 Classificati
on

 <xsl:for-each select="onix:DescriptiveDetail/onix:ProductForm">

 <lido:classification>

 <xsl:for-each select=".">

 <lido:conceptID>

 <xsl:attribute name="lido:type">local</xsl:attribute>

 <xsl:attribute name="lido:label">Product form
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

Builds the mapping from
ONIX ProductForm to a
single LIDO
classification’s <term>.
The @type is set to
“local” for the
<conceptID> for this and
all other LIDO
classifications taken
from an ONIX code list
since the code lists are
not used outside the
ONIX format. The only
exceptions are where
the ONIX code list
borrows from or
replicates the whole a
published standard (e.g.
an ISO code list).

 Page 164 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select=".">

 <xsl:variable name="idx7" select="index-of($map6/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx7 > 0">

 <lido:term>

 <xsl:value-of select="$map6/map[$idx7]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Product
form</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </lido:classification>

 </xsl:for-each>

Builds the LIDO term for
the ONIX ProductForm
classification. As with all
other direct uses of the
ONIX code lists as
classification schemes,
this uses a simple map
of the list’s code to its
concept label.

 Page 165 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:ProductFormDetail">

 <lido:classification>

 <xsl:for-each select=".">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Product form detail
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

Builds a LIDO
classification conceptID
from ONIX
ProductFormDetail, extra
to that included as an
objectWorkType.

 Page 166 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select=".">

 <xsl:variable name="idx9" select="index-of($map8/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx9 > 0">

 <lido:term>

 <xsl:value-of select="$map8/map[$idx9]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Product form
detail</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </lido:classification>

 </xsl:for-each>

Performs the code list
code to label mapping
for the
<ProductFormDetail>
term.

 Page 167 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:PrimaryContentType">

 <lido:classification>

 <xsl:for-each select=".">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Primary content type
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

The PrimaryContent is
used again as a
classification even
though it was earlier
used to select a
Europeana media type.

The Europeana
categories are much
more general than the
full ONIX code list so it
was important to map it
in full as a classification
here to preserve the
richer semantics.

 Page 168 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select=".">

 <xsl:variable name="idx11" select="index-of($map10/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx11 > 0">

 <lido:term>

 <xsl:value-of select="$map10/map[$idx11]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Primary content
type</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </lido:classification>

 </xsl:for-each>

The term mapping direct
from the ONIX code list
as for ProductForm and
ProductFormDetail.

 Page 169 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:CountryOfManufacture">

 <lido:classification>

 <xsl:for-each select=".">

 <lido:conceptID>

 <xsl:attribute name="lido:type">ISO 3166-1</xsl:attribute>

 <xsl:attribute name="lido:label">Country of manufacture
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

One of a small number
of classifications with an
ISO standard for its
@type attribute. The
ONIX code list it maps
from incorporates the
ISO codes and labels
directly so the @type of
both the LIDO conceptID
and term are inherited
from the ISO standard
name.

 Page 170 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select=".">

 <xsl:variable name="idx13" select="index-of($map12/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx13 > 0">

 <lido:term>

 <xsl:value-of select="$map12/map[$idx13]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Country of
manufacture</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </lido:classification>

 </xsl:for-each>

Maps the term from the
code list label as
selected by the code
present in the ONIX
element. Note that
CountryOfManufacture is
a rarely-used ONIX
element but forms a
useful bridge between
the properties of the
items (individual printed
books) normally of
interest in LIDO records
and majority of the
product type properties
described by ONIX
records.

 Page 171 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:Collection">

 <lido:classification>

 <xsl:for-each select="onix:CollectionType">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Collection type
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

<conceptID> mapping of
ONIX CollectionType –
note that the
CollectionType is
contained within the
ONIX <Collection>
composite, so this XSLT
creates one LIDO
classification per ONIX
<Collection> and thus
allowing multiple
collection types to
appear in the LIDO
record.

 Page 172 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:CollectionType">

 <xsl:variable name="idx15" select="index-of($map14/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx15 > 0">

 <lido:term>

 <xsl:value-of select="$map14/map[$idx15]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Collection
type</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </lido:classification>

 </xsl:for-each>

Another direct mapping
of ONIX code list values.

 Page 173 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:Language">

 <xsl:if test="(onix:LanguageRole = '01') or (onix:LanguageRole = '03')
or (onix:LanguageRole = '06') or (onix:LanguageRole = '07') or (onix:LanguageRole =
'08') or (onix:LanguageRole = '09')">

 <lido:classification>

Builds the container
element <classification>
for several pairs of
<conceptID> and <term>
elements based on the
ONIX <Language>
composite.

These are conditional on
the <Language>
composite referring to a
language used in the
product itself (in the
primary textual content
or elsewhere).

It would be more useful
to be able to specify this
language role in the
LIDO record but this
appears to be impossible
in the LIDO
<classification>
structure.

 Page 174 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:CountryCode">

 <lido:conceptID>

 <xsl:attribute name="lido:type">ISO 3166-1</xsl:attribute>

 <xsl:attribute name="lido:label">Country code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 <xsl:for-each select="onix:ScriptCode">

 <lido:conceptID>

 <xsl:attribute name="lido:type">ISO 15924</xsl:attribute>

 <xsl:attribute name="lido:label">Script code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 <xsl:for-each select="onix:LanguageCode">

 <lido:conceptID>

 <xsl:attribute name="lido:type">ISO 639-2/B</xsl:attribute>

 <xsl:attribute name="lido:label">Language code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

Maps the LIDO term
elements for ONIX
CountryCode,
ScriptCode, and
LanguageCode.

Note the ISO standards
incorporated in the ONIX
code lists are used as
@type values.

 <xsl:for-each select="onix:CountryCode">

 <lido:term>

 <xsl:attribute name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Country</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:for-each>

 Page 175 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:ScriptCode">

 <xsl:variable name="idx17" select="index-of($map16/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx17 > 0">

 <lido:term>

 <xsl:value-of select="$map16/map[$idx17]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Script</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 Page 176 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:LanguageCode">

 <xsl:variable name="idx19" select="index-of($map18/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx19 > 0">

 <lido:term>

 <xsl:value-of select="$map18/map[$idx19]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Language</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </lido:classification>

 </xsl:if>

 </xsl:for-each>

 Page 177 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:AudienceCode">

 <lido:classification>

 <xsl:for-each select=".">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Audience code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 <xsl:for-each select=".">

 <xsl:variable name="idx21" select="index-of($map20/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx21 > 0">

 <lido:term>

 <xsl:value-of select="$map20/map[$idx21]/@value"/>

 </lido:term>

 </xsl:when>

Maps the LIDO
conceptID and term for
the free-standing ONIX
<AudienceCode>
element. The values are
mapped directly from the
ONIX code list, hence
the @type value “local”.

 Page 178 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="xml:lang">eng</xsl:attribute>

 <xsl:attribute name="lido:label">Audience</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </lido:classification>

 </xsl:for-each>

The other attributes for
the <term> of the
<classification> mapped
from ONIX
AudienceCode. Note the
@xml:lang attribute is
set to English as this is
the language of the
ONIX code list labels.

 <xsl:for-each select="onix:DescriptiveDetail/onix:AudienceRange">

 <lido:classification>

Creates the container
<classification> element
for a complex multi-part
mapping from the ONIX
<AudienceRange>
composite, dependent
on the order of its sub-
elements.

 <xsl:for-each select="onix:AudienceRangeQualifier">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Audience range qualifier
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

Creates the <conceptID>
for the ONIX
AudienceRangeQualifier
– the <term> is mapped
several sections later
due to the XSLT
generated by MINT.
Semantically, a local
code from an ONIX code
list.

 Page 179 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test=”(position() = 1)”>

 <xsl:for-each select=”onix:AudienceRangePrecision[(position() =
1)]”>

 <xsl:variable name=”idx23” select=”index-of($map22/map,
normalize-space())”/>

 <xsl:choose>

 <xsl:when test=”$idx23 > 0”>

 <lido:term>

 <xsl:value-of select=”$map22/map[$idx23]/@value”/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name=”lido:addedSearchTerm”>no</xsl:attribute>

 <xsl:attribute name=”lido:label”>Audience range precision
1</xsl:attribute>

 <xsl:value-of select=”.”/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </xsl:if>

This conditional
mapping, like the others
below, tests the order of
the XML elements in the
source ONIX file and
preserves the
information the order
carries by adding @label
attributes in the resultant
LIDO elements. The
semantics of the entire
<Audience> statement
must be reconstructed
using the ONIX Best
practice guide, as the
LIDO schema does not
contain any syntactic
structures for explicitly
expressing them.

 Page 180 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(position() = 1)">

 <xsl:for-each select="onix:AudienceRangeValue[(position() = 1)]">

 <lido:term>

 <xsl:attribute name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">Audience range value
1</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:for-each>

 </xsl:if>

Adds the appropriate
@label for the target
<term> of the first
AudienceRangeValue in
the ONIX file’s XML.

 <xsl:if test="(position() = 2)">

 <xsl:for-each select="onix:AudienceRangeValue[(position() = 2)]">

 <lido:term>

 <xsl:attribute name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">Audience range value
2</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:for-each>

 </xsl:if>

Adds the appropriate
@label for the target
<term> of the second
AudienceRangeValue in
the ONIX file’s XML.

 Page 181 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(position() = 2)">

 <xsl:for-each select="onix:AudienceRangePrecision[(position() =
2)]">

 <lido:term>

 <xsl:attribute name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">Audience range precision
2</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:for-each>

 </xsl:if>

 Page 182 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:AudienceRangeQualifier">

 <xsl:variable name="idx25" select="index-of($map24/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx25 > 0">

 <lido:term>

 <xsl:value-of select="$map24/map[$idx25]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Audience range
qualifier</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </lido:classification>

 </xsl:for-each>

 Page 183 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:Audience">

 <lido:classification>

 <xsl:for-each select="onix:AudienceCodeValue">

 <lido:conceptID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:AudienceCodeType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx27" select="index-of($map26/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx27 > 0">

 <xsl:value-of select="$map26/map[$idx27]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Audience code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 Page 184 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:AudienceCodeType = '01'">

 <xsl:for-each
select="onix:AudienceCodeValue[../onix:AudienceCodeType = '01']">

 <xsl:variable name="idx29" select="index-of($map28/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx29 > 0">

 <lido:term>

 <xsl:value-of select="$map28/map[$idx29]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Audience</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </xsl:if>

 </lido:classification>

 </xsl:for-each>

 Page 185 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:ProductContentType">

 <lido:classification>

 <xsl:for-each select=".">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Product content type
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 Page 186 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select=".">

 <xsl:variable name="idx31" select="index-of($map30/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx31 > 0">

 <lido:term>

 <xsl:value-of select="$map30/map[$idx31]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Product content
type</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </lido:classification> </xsl:for-each>

 Page 187 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:Illustrated">

 <xsl:if test="(.)">

 <lido:classification>

 <xsl:for-each select=".">

 <xsl:variable name="idx33" select="index-of($map32/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx33 > 0">

 <lido:term>

 <xsl:value-of select="$map32/map[$idx33]/@value"/>

 </lido:term></xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Illustrated
product</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term><xsl:otherwise></xsl:choose></xsl:for-each>

 </lido:classification></xsl:if></xsl:for-each>

Here, and in the
onix:ReligiousText
mapping below, the
presence of the ONIX
element indicates that
the product is
considered to fall into
that category; the
element is left empty.

In the absence of a URI
identifying the element
(and the classification
concept it stands for) a
simple text string without
a concept ID is used
here to deliver at least
minimal human-readable
semantic value.

 <xsl:for-each select="onix:DescriptiveDetail/onix:ReligiousText">

 <xsl:if test="(.)">

 <lido:classification>

 <lido:term>

 <xsl:attribute name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">Religious
text</xsl:attribute>Religious text</lido:term>

 </lido:classification>

 </xsl:if>

 </xsl:for-each>

 Page 188 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:EditionType">

 <lido:classification>

 <xsl:for-each select=".">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Edition type
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 Page 189 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select=".">

 <xsl:variable name="idx35" select="index-of($map34/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx35 > 0">

 <lido:term>

 <xsl:value-of select="$map34/map[$idx35]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Edition
type</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </lido:classification> </xsl:for-each>

 Page 190 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:ProductFormFeature">

 <lido:classification>

 <xsl:if test="onix:ProductFormFeatureType = '01'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '01']">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Colour of cover
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 </xsl:if>

 <xsl:if test="onix:ProductFormFeatureType = '02'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '02']">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Colour of page edge
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 </xsl:if>

 Page 191 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:ProductFormFeatureType = '04'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '04']">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Special cover material
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 </xsl:if>

 <xsl:if test="onix:ProductFormFeatureType = '05'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '05']">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">DVD region
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 </xsl:if>

 Page 192 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:ProductFormFeatureType = '06'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '06']">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Operating system requirements
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 </xsl:if>

 <xsl:if test="onix:ProductFormFeatureType = '09'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '09']">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">E-publication accessibility
detail code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 </xsl:if>

 Page 193 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:ProductFormFeatureType = '12'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '12']">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">CPSIA choking hazard warning
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 </xsl:if>

 <xsl:if test="onix:ProductFormFeatureType = '13'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '13']">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">EU Toy Safety Hazard Warning
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 </xsl:if>

 Page 194 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(onix:ProductFormFeatureType = '03') or
(onix:ProductFormFeatureType = '07') or (onix:ProductFormFeatureType = '08') or
(onix:ProductFormFeatureType = '30') or (onix:ProductFormFeatureType = '31') or
(onix:ProductFormFeatureType = '32') or (onix:ProductFormFeatureType = '33') or
(onix:ProductFormFeatureType = '34') or (onix:ProductFormFeatureType = '35') or
(onix:ProductFormFeatureType = '36') or (onix:ProductFormFeatureType = '37') or
(onix:ProductFormFeatureType = '40')">

 <xsl:for-each
select="onix:ProductFormFeatureValue[(../onix:ProductFormFeatureType = '03') or
(../onix:ProductFormFeatureType = '07') or (../onix:ProductFormFeatureType = '08')
or (../onix:ProductFormFeatureType = '30') or (../onix:ProductFormFeatureType =
'31') or (../onix:ProductFormFeatureType = '32') or (../onix:ProductFormFeatureType
= '33') or (../onix:ProductFormFeatureType = '34') or
(../onix:ProductFormFeatureType = '35') or (../onix:ProductFormFeatureType = '36')
or (../onix:ProductFormFeatureType = '37') or (../onix:ProductFormFeatureType =
'40')]">

 <lido:conceptID><xsl:attribute name="lido:type">Local</xsl:attribute>

 Page 195 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:attribute name="lido:label">

 <xsl:for-each select="../onix:ProductFormFeatureType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx37" select="index-of($map36/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx37 > 0">

 <xsl:value-of select="$map36/map[$idx37]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

 </xsl:for-each>Â code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 </xsl:if>

 Page 196 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:ProductFormFeatureType = '01'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '01']">

 <xsl:variable name="idx39" select="index-of($map38/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx39 > 0">

 <lido:term>

 <xsl:value-of select="$map38/map[$idx39]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">Color of
cover</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose><xsl:for-each><xsl:if>

 Page 197 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:ProductFormFeatureType = '02'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '02']">

 <xsl:variable name="idx41" select="index-of($map40/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx41 > 0">

 <lido:term>

 <xsl:value-of select="$map40/map[$idx41]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">Color of page
edge</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term><xsl:otherwise></xsl:choose></xsl:for-
each></xsl:if>

 Page 198 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:ProductFormFeatureType = '04'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '04']">

 <xsl:variable name="idx43" select="index-of($map42/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx43 > 0">

 <lido:term>

 <xsl:value-of select="$map42/map[$idx43]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">Special cover
material</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term><xsl:otherwise><xsl:choose><xsl:for-
each><xsl:if>

 Page 199 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:ProductFormFeatureType = '05'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '05']">

 <xsl:variable name="idx45" select="index-of($map44/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx45 > 0">

 <lido:term>

 <xsl:value-of select="$map44/map[$idx45]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">DVD
region</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term><xsl:otherwise><xsl:choose>

 </xsl:for-each>

 </xsl:if>

 Page 200 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:ProductFormFeatureType = '06'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '06']">

 <xsl:variable name="idx47" select="index-of($map46/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx47 > 0">

 <lido:term>

 <xsl:value-of select="$map46/map[$idx47]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">Operating system
requirements</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term><xsl:otherwise></xsl:choose></xsl:for-
each></xsl:if>

 Page 201 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:ProductFormFeatureType = '09'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '09']">

 <xsl:variable name="idx49" select="index-of($map48/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx49 > 0">

 <lido:term>

 <xsl:value-of select="$map48/map[$idx49]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">E-publication
accessibility detail</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term></xsl:otherwise></xsl:choose></xsl:for-each>

 </xsl:if>

 Page 202 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:ProductFormFeatureType = '12'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '12']">

 <xsl:variable name="idx51" select="index-of($map50/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx51 > 0">

 <lido:term>

 <xsl:value-of select="$map50/map[$idx51]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">CPSIA choking hazard
warning</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term></xsl:otherwise></xsl:choose></xsl:for-each>

 </xsl:if>

 Page 203 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:ProductFormFeatureType = '13'">

 <xsl:for-each
select="onix:ProductFormFeatureValue[../onix:ProductFormFeatureType = '13']">

 <xsl:variable name="idx53" select="index-of($map52/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx53 > 0">

 <lido:term>

 <xsl:value-of select="$map52/map[$idx53]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">EU Toy Safety Hazard
Warning</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term><xsl:otherwise></xsl:choose></xsl:for-each>

 </xsl:if>

 Page 204 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(onix:ProductFormFeatureType = '03') or
(onix:ProductFormFeatureType = '07') or (onix:ProductFormFeatureType = '08') or
(onix:ProductFormFeatureType = '30') or (onix:ProductFormFeatureType = '31') or
(onix:ProductFormFeatureType = '32') or (onix:ProductFormFeatureType = '33') or
(onix:ProductFormFeatureType = '34') or (onix:ProductFormFeatureType = '35') or
(onix:ProductFormFeatureType = '36') or (onix:ProductFormFeatureType = '37') or
(onix:ProductFormFeatureType = '40')">

 <xsl:for-each
select="onix:ProductFormFeatureValue[(../onix:ProductFormFeatureType = '03') or
(../onix:ProductFormFeatureType = '07') or (../onix:ProductFormFeatureType = '08')
or (../onix:ProductFormFeatureType = '30') or (../onix:ProductFormFeatureType =
'31') or (../onix:ProductFormFeatureType = '32') or (../onix:ProductFormFeatureType
= '33') or (../onix:ProductFormFeatureType = '34') or
(../onix:ProductFormFeatureType = '35') or (../onix:ProductFormFeatureType = '36')
or (../onix:ProductFormFeatureType = '37') or (../onix:ProductFormFeatureType =
'40')]">

 <lido:term>

 Page 205 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:attribute name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">

 <xsl:for-each select="../onix:ProductFormFeatureType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx55" select="index-of($map54/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx55 > 0">

 <xsl:value-of select="$map54/map[$idx55]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term></xsl:for-each></xsl:if>

 </lido:classification>

 </xsl:for-each>

 Page 206 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:ProductComposition">

 <lido:classification>

 <xsl:for-each select=".">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Product composition
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 <xsl:for-each select=".">

 <xsl:variable name="idx57" select="index-of($map56/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx57 > 0">

 <lido:term>

 <xsl:value-of select="$map56/map[$idx57]/@value"/>

 </lido:term>

 </xsl:when>

 Page 207 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">yes</xsl:attribute>

 <xsl:attribute name="lido:label">Product
composition</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </lido:classification>

 </xsl:for-each>

 </lido:classificationWrap>

 </lido:objectClassificationWrap>

Identificatio
n

 <lido:objectIdentificationWrap>

 titleWrap <lido:titleWrap>

 Page 208 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:TitleDetail">

 <xsl:if test="(not(onix:TitleStatement)) and
(onix:TitleElement/onix:TitleWithoutPrefix) and
((not(onix:TitleElement/onix:PartNumber)) and
(not(onix:TitleElement/onix:YearOfAnnual))) and ((onix:TitleType = '00') or
(onix:TitleType = '01') or (onix:TitleType = '05')) and
(onix:TitleElement/onix:TitleElementLevel = '01')">

 <lido:titleSet>

 <xsl:attribute name="lido:sortorder">1</xsl:attribute>

 <xsl:if test="onix:TitleElement/onix:TitleElementLevel = '01'">

 <lido:appellationValue>

 <xsl:for-each
select="onix:TitleElement/onix:TitlePrefix[../onix:TitleElementLevel = '01']">

 <xsl:value-of select="."/>

 </xsl:for-each>Â <xsl:for-each
select="onix:TitleElement/onix:TitleWithoutPrefix[../onix:TitleElementLevel =
'01']">

 <xsl:value-of select="."/>

 </xsl:for-each>

 </lido:appellationValue>

 </xsl:if><lido:titleSet></xsl:if><xsl:for-each>

 Page 209 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:TitleDetail">

 <xsl:if test="(not(onix:TitleStatement)) and
((not(onix:TitleElement/onix:PartNumber)) and
(not(onix:TitleElement/onix:YearOfAnnual))) and
((not(onix:TitleElement/onix:TitlePrefix)) and
(not(onix:TitleElement/onix:TitleWithoutPrefix))) and
(onix:TitleElement/onix:TitleText) and ((onix:TitleType = '00') or (onix:TitleType =
'01') or (onix:TitleType = '05')) and (onix:TitleElement/onix:TitleElementLevel =
'01')">

 <lido:titleSet>

 <xsl:attribute name="lido:sortorder">1</xsl:attribute>

 <xsl:if test="(onix:TitleElement/onix:TitleElementLevel = '01')">

 <xsl:for-each
select="onix:TitleElement/onix:TitleText[(../onix:TitleElementLevel = '01')]">

 <lido:appellationValue>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each></xsl:if></lido:titleSet></xsl:if>

 </xsl:for-each>

 Page 210 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:TitleDetail">

 <xsl:if test="(onix:TitleElement/onix:Subtitle) and ((onix:TitleType =
'00') or (onix:TitleType = '01') or (onix:TitleType = '05')) and
(onix:TitleElement/onix:TitleElementLevel = '01')">

 <lido:titleSet>

 <xsl:attribute name="lido:type">Subtitle</xsl:attribute>

 <xsl:attribute name="lido:sortorder">2</xsl:attribute>

 <xsl:if test="onix:TitleElement/onix:TitleElementLevel = '01'">

 <xsl:for-each
select="onix:TitleElement/onix:Subtitle[../onix:TitleElementLevel = '01']">

 <lido:appellationValue>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </xsl:if></lido:titleSet></xsl:if></xsl:for-each>

 <xsl:for-each select="onix:DescriptiveDetail/onix:TitleDetail">

 <xsl:if test="(onix:TitleStatement) and ((onix:TitleType = '00') or
(onix:TitleType = '01') or (onix:TitleType = '05'))">

 <lido:titleSet>

 <xsl:attribute name="lido:type">Display title</xsl:attribute>

 <xsl:attribute name="lido:sortorder">1</xsl:attribute>

 <xsl:for-each select="onix:TitleStatement">

 <lido:appellationValue>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </lido:titleSet>

 </xsl:if>

 </xsl:for-each>

 </lido:titleWrap>

 Page 211 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:inscriptionsWrap>

 <xsl:for-each select="onix:CollateralDetail/onix:TextContent">

 <xsl:if test="((onix:TextType = '04') or (onix:TextType = '05') or
(onix:TextType = '14')) and ((onix:ContentAudience = '00') or (onix:ContentAudience
= '03') or (onix:ContentAudience = '06')) and ((onix:Text/@textformat = '03') or
(onix:Text/@textformat = '06') or (onix:Text/@textformat = '07'))">

 <lido:inscriptions>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="onix:TextType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx59" select="index-of($map58/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx59 > 0">

 <xsl:value-of select="$map58/map[$idx59]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise>

 </xsl:choose></xsl:if></xsl:for-each></xsl:attribute>

 <xsl:for-each select="onix:Text">

 <lido:inscriptionTranscription>

 <xsl:value-of select="."/>

 </lido:inscriptionTranscription>

 </xsl:for-each>

 </lido:inscriptions>

 </xsl:if>

 </xsl:for-each>

 </lido:inscriptionsWrap>

 Page 212 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

Identificatio
n

description <lido:objectDescriptionWrap>

 <xsl:for-each select="onix:DescriptiveDetail/onix:IllustrationsNote">

 <xsl:if test="(not(../onix:NumberOfIllustrations))">

 <lido:objectDescriptionSet>

 <xsl:if test="(not(../onix:NumberOfIllustrations)) and
(not(../onix:AncillaryContent/onix:Number))">

 <xsl:for-each select=".[(not(../onix:NumberOfIllustrations)) and
(not(../onix:AncillaryContent/onix:Number))]">

 <lido:descriptiveNoteValue>

 <xsl:attribute name="lido:label">Illustrations
note</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:descriptiveNoteValue>

 </xsl:for-each>

 </xsl:if>

 </lido:objectDescriptionSet>

 </xsl:if>

 </xsl:for-each>

 <xsl:for-each
select="onix:DescriptiveDetail/onix:ProductFormDescription">

 <lido:objectDescriptionSet>

 <xsl:for-each select=".">

 <lido:descriptiveNoteValue>

 <xsl:attribute name="lido:label">Product form
description</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:descriptiveNoteValue>

 </xsl:for-each>

 </lido:objectDescriptionSet>

 </xsl:for-each>

 Page 213 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:ProductFormFeature">

 <xsl:if test="(onix:ProductFormFeatureType = '03') or
(onix:ProductFormFeatureType = '06') or (onix:ProductFormFeatureType = '07') or
(onix:ProductFormFeatureType = '08') or (onix:ProductFormFeatureType = '17') or
(onix:ProductFormFeatureType = '37') or (onix:ProductFormFeatureType = '40')">

 <lido:objectDescriptionSet>

 <xsl:for-each select="onix:ProductFormFeatureDescription">

 <lido:descriptiveNoteValue>

 <xsl:attribute name="lido:label">

 <xsl:for-each select="../onix:ProductFormFeatureType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx61" select="index-of($map60/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx61 > 0">

 <xsl:value-of select="$map60/map[$idx61]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-each>

 </xsl:attribute><xsl:value-of select="."/>

 </lido:descriptiveNoteValue>

 </xsl:for-each>

 </lido:objectDescriptionSet>

 </xsl:if></xsl:for-each>

 Page 214 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:EditionStatement">

 <lido:objectDescriptionSet>

 <xsl:for-each select=".">

 <lido:descriptiveNoteValue>

 <xsl:attribute name="lido:label">Edition
statement</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:descriptiveNoteValue>

 </xsl:for-each>

 </lido:objectDescriptionSet>

 </xsl:for-each>

 <xsl:for-each select="onix:DescriptiveDetail/onix:AncillaryContent">

 <xsl:if test="(not(onix:Number))">

 <lido:objectDescriptionSet>

 <xsl:if test="(not(../onix:NumberOfIllustrations)) and
(not(onix:Number))">

 <xsl:for-each
select="onix:AncillaryContentDescription[(not(../../onix:NumberOfIllustrations)) and
(not(../onix:Number))]">

 <lido:descriptiveNoteValue>

 <xsl:value-of select="."/>

 </lido:descriptiveNoteValue>

 </xsl:for-each>

 </xsl:if>

 Page 215 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(not(../onix:NumberOfIllustrations)) and
(not(onix:Number))">

 <xsl:for-each
select="../onix:IllustrationsNote[(not(../onix:NumberOfIllustrations)) and
(not(../onix:AncillaryContent/onix:Number))]">

 <lido:descriptiveNoteValue>

 <xsl:attribute name="lido:label">Illustrations and other
contents note</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:descriptiveNoteValue>

 </xsl:for-each>

 </xsl:if>

 </lido:objectDescriptionSet>

 </xsl:if>

 </xsl:for-each>

 <xsl:for-each select="onix:CollateralDetail/onix:TextContent">

 <xsl:if test="((onix:ContentAudience = '00') or (onix:ContentAudience
= '03') or (onix:ContentAudience = '06')) and ((onix:Text/@textformat = '00') or
(onix:Text/@textformat = '06') or (onix:Text/@textformat = '07')) and
((onix:TextType = '02') or (onix:TextType = '03') or (onix:TextType = '10') or
(onix:TextType = '11') or (onix:TextType = '12') or (onix:TextType = '13'))">

 <lido:objectDescriptionSet>

 Page 216 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:attribute name="lido:type">

 <xsl:for-each select="onix:TextType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx63" select="index-of($map62/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx63 > 0">

 <xsl:value-of select="$map62/map[$idx63]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 Page 217 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:Text">

 <lido:descriptiveNoteValue>

 <xsl:value-of select="."/>

 </lido:descriptiveNoteValue>

 </xsl:for-each>

 <xsl:for-each select="onix:SourceTitle">

 <lido:sourceDescriptiveNote>

 <xsl:value-of select="."/>

 </lido:sourceDescriptiveNote>

 </xsl:for-each>

 </lido:objectDescriptionSet>

 </xsl:if>

 </xsl:for-each>

 </lido:objectDescriptionWrap>

 <lido:objectMeasurementsWrap>

 <xsl:for-each
select="onix:DescriptiveDetail/onix:AncillaryContent/onix:Number">

 <xsl:if test="(.)">

 <lido:objectMeasurementsSet>

 <xsl:if test="(../onix:AncillaryContentDescription)">

 <xsl:for-each select="../onix:AncillaryContentDescription[(.)]">

 <lido:displayObjectMeasurements>

 <xsl:attribute name="lido:label">Ancillary content
description</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:displayObjectMeasurements>

 </xsl:for-each>

 </xsl:if>

 Page 218 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:objectMeasurements>

 <lido:measurementsSet>

 <lido:measurementType>

 <xsl:attribute name="lido:label">Ancillary content
type</xsl:attribute>Number of illustrations or other content
items</lido:measurementType>

 <lido:measurementUnit>(count)</lido:measurementUnit>

 <xsl:for-each select=".">

 <xsl:if test="position() = 1">

 <lido:measurementValue>

 <xsl:value-of select="."/>

 </lido:measurementValue>

 </xsl:if>

 </xsl:for-each>

 Page 219 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 </lido:measurementsSet>

 <xsl:for-each select="../onix:AncillaryContentType">

 <xsl:variable name="idx65" select="index-of($map64/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx65 > 0">

 <lido:extentMeasurements>

 <xsl:value-of select="$map64/map[$idx65]/@value"/>

 </lido:extentMeasurements>

 </xsl:when>

 <xsl:otherwise>

 <lido:extentMeasurements>

 <xsl:attribute name="lido:label">Ancillary content
type</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:extentMeasurements>

 </xsl:otherwise></xsl:choose></xsl:for-each>

 </lido:objectMeasurements>

 </lido:objectMeasurementsSet>

 </xsl:if></xsl:for-each>

 Page 220 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each
select="onix:DescriptiveDetail/onix:NumberOfIllustrations">

 <xsl:if test="(.)">

 <lido:objectMeasurementsSet>

 <xsl:for-each select="../onix:IllustrationsNote">

 <lido:displayObjectMeasurements>

 <xsl:value-of select="."/>

 </lido:displayObjectMeasurements>

 </xsl:for-each>

 <lido:objectMeasurements>

 <lido:measurementsSet>

 <lido:measurementType>Number of
illustrations</lido:measurementType>

 <lido:measurementUnit>(count)</lido:measurementUnit>

 <xsl:for-each select=".">

 <xsl:if test="position() = 1">

 <lido:measurementValue>

 <xsl:value-of select="."/>

 </lido:measurementValue>

 </xsl:if>

 </xsl:for-each>

 </lido:measurementsSet>

 </lido:objectMeasurements>

 </lido:objectMeasurementsSet>

 </xsl:if>

 </xsl:for-each>

 Page 221 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:MapScale">

 <xsl:if test="(.)">

 <lido:objectMeasurementsSet>

 <lido:displayObjectMeasurements>Map scale:Â 1:<xsl:for-each
select=".">

 <xsl:value-of select="."/>

 </xsl:for-each>

 </lido:displayObjectMeasurements>

 <lido:objectMeasurements>

 <lido:measurementsSet>

 <lido:measurementType>Map scale</lido:measurementType>

 <lido:measurementUnit>1</lido:measurementUnit>

 <xsl:for-each select=".">

 <xsl:if test="position() = 1">

 <lido:measurementValue>

 <xsl:value-of select="."/>

 </lido:measurementValue>

 </xsl:if>

 </xsl:for-each>

 </lido:measurementsSet>

 </lido:objectMeasurements>

 </lido:objectMeasurementsSet>

 </xsl:if>

 </xsl:for-each>

 Page 222 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:Measure">

 <lido:objectMeasurementsSet>

 <lido:displayObjectMeasurements>

 <xsl:for-each select="onix:MeasureType">

 <xsl:variable name="idx67" select="index-of($map66/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx67 > 0">

 <xsl:value-of select="$map66/map[$idx67]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>:Â <xsl:for-each select="onix:Measurement">

 <xsl:value-of select="."/>

 </xsl:for-each>Â <xsl:for-each select="onix:MeasureUnitCode">

 <xsl:value-of select="."/>

 </xsl:for-each> </lido:displayObjectMeasurements>

 Page 223 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:objectMeasurements>

 <lido:measurementsSet>

 <xsl:for-each select="onix:MeasureType">

 <xsl:variable name="idx69" select="index-of($map68/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx69 > 0">

 <lido:measurementType>

 <xsl:value-of select="$map68/map[$idx69]/@value"/>

 </lido:measurementType>

 </xsl:when>

 <xsl:otherwise>

 <lido:measurementType>

 <xsl:attribute name="xml:lang">en</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:measurementType>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 Page 224 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:MeasureUnitCode">

 <xsl:variable name="idx71" select="index-of($map70/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx71 > 0">

 <lido:measurementUnit>

 <xsl:value-of select="$map70/map[$idx71]/@value"/>

 </lido:measurementUnit>

 </xsl:when>

 <xsl:otherwise>

 <lido:measurementUnit>

 <xsl:value-of select="."/>

 </lido:measurementUnit>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 <xsl:for-each select="onix:Measurement">

 <xsl:if test="position() = 1">

 <lido:measurementValue>

 <xsl:value-of select="."/>

 </lido:measurementValue>

 </xsl:if>

 </xsl:for-each>

 </lido:measurementsSet>

 </lido:objectMeasurements>

 </lido:objectMeasurementsSet>

 </xsl:for-each>

 </lido:objectMeasurementsWrap>

 </lido:objectIdentificationWrap>

 Page 225 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

Event Event <lido:eventWrap>

 <lido:eventSet>

 <lido:event>

 <lido:eventType>

 <lido:conceptID>

 <xsl:attribute
name="lido:type">URI</xsl:attribute>http://terminology.lido-
schema.org/lido00012</lido:conceptID>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>Creation</lido:term>

 </lido:eventType>

 <xsl:for-each select="onix:DescriptiveDetail/onix:Contributor">

The LIDO creation event
is structurally mapped to
the ONIX contributor
composite, since this is
the defining feature of
the event in ONIX,
lacking an explicit event
structure because the
publication is the primary
event of interest for a
book product.

 Actor <lido:eventActor>

 <xsl:attribute name="lido:sortorder">

 <xsl:for-each select="onix:SequenceNumber">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if></xsl:for-each></xsl:attribute>

Maps the ONIX
sequence number of
contributors to the
equivalent LIDO sort
order. In this case, the
numbering is really
equivalent.

 Page 226 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 Actor <xsl:if test="(onix:ProfessionalAffiliation)">

 <lido:displayActorInRole>

 <xsl:attribute name="lido:label">Professional position -
affiliation</xsl:attribute>

 <xsl:for-each
select="onix:ProfessionalAffiliation/onix:ProfessionalPosition">

 <xsl:value-of select="."/>

 </xsl:for-each>Â -Â <xsl:for-each
select="onix:ProfessionalAffiliation/onix:Affiliation">

 <xsl:value-of select="."/>

 </xsl:for-each>

 </lido:displayActorInRole>

 </xsl:if>

This portion
concatenates the
position and affiliation
elements, separated by
2 hard space characters
(ALT+0160) surrounding
a hyphen – shown here
as “Â –Â” – displaying
exactly as in the @label
describing the content so
that end-users can make
sense of the data.

The “xsl:if” clause tests
for the existence of the
containing composite in
the ONIX source, since
no structural mapping
can be made from 2
elements, and otherwise
a blank
lido:displayActorInRole
could be generated.

 <xsl:for-each select="onix:ContributorDescription">

 <lido:displayActorInRole>

 <xsl:attribute name="lido:label">Contributor
description</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:displayActorInRole>

 </xsl:for-each>

 Page 227 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:actorInRole>

 <lido:actor>

 <xsl:for-each
select="onix:AlternativeName/onix:NameIdentifier/onix:IDValue">

 <lido:actorID>

 <xsl:attribute name="lido:pref">alternate</xsl:attribute>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:NameIDType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx73" select="index-
of($map72/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx73 > 0">

 <xsl:value-of
select="$map72/map[$idx73]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise><xsl:choose></xsl:if></xsl:for-
each>

 </xsl:attribute>

 Page 228 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(../onix:IDTypeName)">

 <xsl:attribute name="lido:label">

 <xsl:for-each select="../onix:IDTypeName">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 </xsl:if>

 <xsl:value-of select="."/>

 </lido:actorID>

 </xsl:for-each>

 <xsl:for-each select="onix:NameIdentifier/onix:IDValue">

 Page 229 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:actorID>

 <xsl:attribute name="lido:pref">preferred</xsl:attribute>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:NameIDType">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:if test="(../onix:IDTypeName)">

 <xsl:attribute name="lido:label">

 <xsl:for-each select="../onix:IDTypeName">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if></xsl:for-each></xsl:attribute></xsl:if>

 <xsl:value-of select="."/>

 </lido:actorID>

 </xsl:for-each>

 Page 230 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:AlternativeName">

 <lido:nameActorSet>

 <xsl:for-each select="onix:PersonName">

 <lido:appellationValue>

 <xsl:attribute

 name="lido:label">Person nameÂ -Â <xsl:for-each
select="../onix:NameType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx75" select="index-
of($map74/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx75 > 0">

 <xsl:value-of
select="$map74/map[$idx75]/@value"/>

 </xsl:when><xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose>

 </xsl:if></xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue><xsl:for-each>

 Page 231 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(not(onix:PersonName))">

 <xsl:for-each
select="onix:PersonNameInverted[(not(../onix:PersonName))]">

 <lido:appellationValue>

 <xsl:attribute

 name="lido:label">Person name invertedÂ -
Â <xsl:for-each select="../onix:NameType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx77" select="index-
of($map76/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx77 > 0">

 <xsl:value-of
select="$map76/map[$idx77]/@value"/>

 </xsl:when><xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose>

 </xsl:if></xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue></xsl:for-each></xsl:if>

 Page 232 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:CorporateName">

 <lido:appellationValue>

 <xsl:attribute

 name="lido:label">Corporate nameÂ -Â <xsl:for-each
select="../onix:NameType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx79" select="index-
of($map78/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx79 > 0">

 <xsl:value-of
select="$map78/map[$idx79]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 233 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(not(onix:CorporateName))">

 <xsl:for-each
select="onix:CorporateNameInverted[(not(../onix:CorporateName))]">

 <lido:appellationValue>

 <xsl:attribute

 name="lido:label">Corporate name invertedÂ -
Â <xsl:for-each select="../onix:NameType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx81" select="index-
of($map80/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx81 > 0">

 <xsl:value-of
select="$map80/map[$idx81]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose>

 </xsl:if></xsl:for-each></xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue></xsl:for-each></xsl:if>

 Page 234 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:TitlesBeforeNames">

 <lido:appellationValue>

 <xsl:attribute

 name="lido:label">Person name part 1: titles
before namesÂ -Â <xsl:for-each select="../onix:NameType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx83" select="index-
of($map82/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx83 > 0">

 <xsl:value-of
select="$map82/map[$idx83]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-
each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 235 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:NamesBeforeKey">

 <lido:appellationValue>

 <xsl:attribute

 name="lido:label">Person name part 2: names before
key namesÂ -Â <xsl:for-each select="../onix:NameType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx85" select="index-
of($map84/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx85 > 0">

 <xsl:value-of
select="$map84/map[$idx85]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 236 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:PrefixToKey">

 <lido:appellationValue>

 <xsl:attribute

 name="lido:label">Person name part 3: prefix to
key namesÂ -Â <xsl:for-each select="../onix:NameType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx87" select="index-
of($map86/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx87 > 0">

 <xsl:value-of
select="$map86/map[$idx87]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 237 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:KeyNames">

 <lido:appellationValue>

 <xsl:attribute

 name="lido:label">Person name part 4: key namesÂ -
Â <xsl:for-each select="../onix:NameType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx89" select="index-
of($map88/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx89 > 0">

 <xsl:value-of
select="$map88/map[$idx89]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-
each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 238 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:NamesAfterKey">

 <lido:appellationValue>

 <xsl:attribute

 name="lido:label">Person name part 5: names after
key namesÂ -Â <xsl:for-each select="../onix:NameType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx91" select="index-
of($map90/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx91 > 0">

 <xsl:value-of
select="$map90/map[$idx91]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 239 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:SuffixToKey">

 <lido:appellationValue>

 <xsl:attribute

 name="lido:label">Person name part 6: suffix after
key namesÂ -Â <xsl:for-each select="../onix:NameType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx93" select="index-
of($map92/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx93 > 0">

 <xsl:value-of
select="$map92/map[$idx93]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 240 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:LettersAfterNames">

 <lido:appellationValue>

 <xsl:attribute

 name="lido:label">Person name part 7:
qualifications and honors after namesÂ -Â <xsl:for-each select="../onix:NameType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx95" select="index-
of($map94/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx95 > 0">

 <xsl:value-of
select="$map94/map[$idx95]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 241 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:TitlesAfterNames">

 <lido:appellationValue>

 <xsl:attribute

 name="lido:label">Person name part 8: titles after
namesÂ -Â <xsl:for-each select="../onix:NameType">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </lido:nameActorSet>

 </xsl:for-each>

 <lido:nameActorSet>

 <xsl:for-each select="onix:TitlesBeforeNames">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part 1:
titles before names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 242 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:NamesBeforeKey">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part 2:
names before key names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 <xsl:for-each select="onix:PrefixToKey">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part 3:
prefix to key names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 <xsl:for-each select="onix:KeyNames">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part 4: key
names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 <xsl:for-each select="onix:NamesAfterKey">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part
5:names after key names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 243 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:SuffixToKey">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part 6:
suffix after key names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 <xsl:for-each select="onix:LettersAfterNames">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part 7:
qualifications and honors after names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 <xsl:for-each select="onix:TitlesAfterNames">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part 8:
titles after names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 <xsl:for-each select="onix:CorporateName">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Corporate contributor
name</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 244 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(not(onix:CorporateName))">

 <xsl:for-each
select="onix:CorporateNameInverted[(not(../onix:CorporateName))]">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Corporate contributor
name, inverted</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </xsl:if>

 <xsl:if test="(not(onix:PersonName))">

 <xsl:for-each
select="onix:PersonNameInverted[(not(../onix:PersonName))]">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name,
inverted</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </xsl:if>

 <xsl:for-each select="onix:PersonName">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person
name</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </lido:nameActorSet>

 Page 245 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:ContributorPlace">

 <lido:nationalityActor>

 <xsl:for-each select="onix:RegionCode">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">

 <xsl:for-each
select="../onix:ContributorPlaceRelator">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx97" select="index-
of($map96/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx97 > 0">

 <xsl:value-of
select="$map96/map[$idx97]/@value"/>

 </xsl:when><xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if>

 </xsl:for-each>Â region code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID></xsl:for-each>

 Page 246 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:CountryCode">

 <lido:conceptID>

 <xsl:attribute name="lido:type">ISO 3166-
1</xsl:attribute>

 <xsl:attribute name="lido:label">

 <xsl:for-each
select="../onix:ContributorPlaceRelator">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx99" select="index-
of($map98/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx99 > 0">

 <xsl:value-of
select="$map98/map[$idx99]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if>

 </xsl:for-each>Â country code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID></xsl:for-each>

 Page 247 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:RegionCode">

 <xsl:variable name="idx101" select="index-
of($map100/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx101 > 0">

 <lido:term>

 <xsl:value-of
select="$map100/map[$idx101]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">

 <xsl:for-each
select="../onix:ContributorPlaceRelator">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each> region</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 Page 248 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:CountryCode">

 <xsl:variable name="idx103" select="index-
of($map102/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx103 > 0">

 <lido:term>

 <xsl:value-of
select="$map102/map[$idx103]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">

 Page 249 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each
select="../onix:ContributorPlaceRelator">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx105" select="index-
of($map104/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx105 > 0">

 <xsl:value-of
select="$map104/map[$idx105]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

 </xsl:for-each> country</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term></xsl:otherwise></xsl:choose>

 </xsl:for-each>

 </lido:nationalityActor>

 </xsl:for-each>

 Page 250 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:vitalDatesActor>

 <xsl:if test="onix:ContributorDate/onix:ContributorDateRole
= '50'">

 <xsl:for-each
select="onix:ContributorDate/onix:Date[../onix:ContributorDateRole = '50']">

 <xsl:if test="position() = 1">

 <lido:earliestDate>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="@dateformat">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Date of
birth</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:earliestDate>

 </xsl:if></xsl:for-each>

 </xsl:if>

There is a small bug in
the XSLT here, since
MINT does not allow a
conditional statement
for, or a structural
mapping to
lido:vitalDatesActor and
hence if no
onix:ContributorDate is
present, empty elements
may be generated for
lido:VitalDatesActor.

 Page 251 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:ContributorDate/onix:ContributorDateRole
= '51'">

 <xsl:for-each
select="onix:ContributorDate/onix:Date[../onix:ContributorDateRole = '51']">

 <xsl:if test="position() = 1">

 <lido:latestDate>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="@dateformat">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Date of
death</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:latestDate>

 </xsl:if></xsl:for-each></xsl:if>

 </lido:vitalDatesActor></lido:actor>

 <lido:roleActor>

 <xsl:for-each select="onix:ContributorRole">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Contributor role
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 Page 252 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:ContributorRole">

 <xsl:variable name="idx107" select="index-of($map106/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx107 > 0">

 <lido:term>

 <xsl:value-of select="$map106/map[$idx107]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">Contributor
role</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise></xsl:choose></xsl:for-each>

 </lido:roleActor></lido:actorInRole></lido:eventActor>

</xsl:for-each></lido:event></lido:eventSet>

 Page 253 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:CollateralDetail/onix:TextContent">

 <xsl:if test="((onix:ContentAudience = '00') or (onix:ContentAudience =
'03') or (onix:ContentAudience = '06')) and ((onix:TextType = '06') or
(onix:TextType = '07') or (onix:TextType = '08'))">

 <lido:eventSet>

 <lido:event>

 <lido:eventType>

 <lido:conceptID>

 <xsl:attribute
name="lido:type">Local</xsl:attribute>http://terminology.lido-
schema.org/lido00003</lido:conceptID>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>(Non-specified)</lido:term>

 </lido:eventType>

 Page 254 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:TextSourceCorporate">

 <lido:eventActor>

 <lido:actorInRole>

 <lido:actor>

 <lido:nameActorSet>

 <xsl:for-each select=".">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Corporate source of
text</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </lido:nameActorSet>

 </lido:actor>

 </lido:actorInRole>

 </lido:eventActor>

 </xsl:for-each>

 Page 255 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:TextAuthor">

 <lido:eventActor>

 <lido:actorInRole>

 <lido:actor>

 <lido:nameActorSet>

 <xsl:for-each select=".">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Text
author</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </lido:nameActorSet>

 </lido:actor>

 </lido:actorInRole>

 </lido:eventActor>

 </xsl:for-each>

 <lido:eventDate>

 <lido:date>

 <xsl:if test="onix:ContentDate/onix:ContentDateRole = '01'">

 <xsl:for-each
select="onix:ContentDate/onix:Date[../onix:ContentDateRole = '01']">

 <xsl:if test="position() = 1">

 <lido:earliestDate>

 <xsl:value-of select="."/>

 </lido:earliestDate>

 </xsl:if>

 </xsl:for-each>

 </xsl:if>

 Page 256 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="onix:ContentDate/onix:ContentDateRole = '01'">

 <xsl:for-each
select="onix:ContentDate/onix:Date[../onix:ContentDateRole = '01']">

 <xsl:if test="position() = 1">

 <lido:latestDate>

 <xsl:value-of select="."/>

 </lido:latestDate>

 </xsl:if>

 </xsl:for-each>

 </xsl:if>

 </lido:date>

 </lido:eventDate>

 <lido:eventDescriptionSet>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="onix:TextType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx109" select="index-of($map108/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx109 > 0">

 <xsl:value-of select="$map108/map[$idx109]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 Page 257 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:Text">

 <lido:descriptiveNoteValue>

 <xsl:value-of select="."/>

 </lido:descriptiveNoteValue>

 </xsl:for-each>

 <xsl:for-each select="onix:SourceTitle">

 <lido:sourceDescriptiveNote>

 <xsl:value-of select="."/>

 </lido:sourceDescriptiveNote>

 </xsl:for-each>

 </lido:eventDescriptionSet>

 </lido:event>

 </lido:eventSet>

 </xsl:if>

 </xsl:for-each>

 <xsl:for-each select="onix:CollateralDetail/onix:CitedContent">

 <xsl:if test="(onix:ContentAudience = '00') or (onix:ContentAudience =
'03') or (onix:ContentAudience = '06')">

 <lido:eventSet>

 <lido:event>

 <lido:eventType>

 <lido:conceptID>

 <xsl:attribute
name="lido:type">Local</xsl:attribute>http://terminology.lido-
schema.org/lido00003</lido:conceptID>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>(Non-specified)</lido:term>

 </lido:eventType>

 Page 258 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:eventDate>

 <lido:date>

 <xsl:if test="(onix:ContentDate/onix:ContentDateRole = '01')
or (onix:ContentDate/onix:ContentDateRole = '04')">

 <xsl:for-each
select="onix:ContentDate/onix:Date[(../onix:ContentDateRole = '01') or
(../onix:ContentDateRole = '04')]">

 <xsl:if test="position() = 1">

 <lido:earliestDate>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="@dateformat">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 Page 259 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:attribute name="lido:label">

 <xsl:for-each select="../onix:ContentDateRole">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx111" select="index-
of($map110/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx111 > 0">

 <xsl:value-of
select="$map110/map[$idx111]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:earliestDate>

 </xsl:if></xsl:for-each></xsl:if>

 Page 260 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(onix:ContentDate/onix:ContentDateRole = '01')
or (onix:ContentDate/onix:ContentDateRole = '04')">

 <xsl:for-each
select="onix:ContentDate/onix:Date[(../onix:ContentDateRole = '01') or
(../onix:ContentDateRole = '04')]">

 <xsl:if test="position() = 1">

 <lido:latestDate>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="@dateformat">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 Page 261 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:attribute name="lido:label">

 <xsl:for-each select="../onix:ContentDateRole">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx113" select="index-
of($map112/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx113 > 0">

 <xsl:value-of
select="$map112/map[$idx113]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:latestDate>

 </xsl:if></xsl:for-
each></xsl:if></lido:date></lido:eventDate>

 <lido:thingPresent>

 <lido:object>

 <xsl:for-each select="onix:ResourceLink">

 <lido:objectWebResource>

 <xsl:value-of select="."/>

 </lido:objectWebResource>

 </xsl:for-each>

 Page 262 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:CitedContentType">

 <xsl:variable name="idx115" select="index-of($map114/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx115 > 0">

 <lido:objectNote>

 <xsl:value-of select="$map114/map[$idx115]/@value"/>

 </lido:objectNote>

 </xsl:when>

 <xsl:otherwise>

 <lido:objectNote>

 <xsl:attribute name="lido:label">Cited content
type</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 <xsl:for-each select="onix:SourceType">

 <lido:objectNote>

 <xsl:attribute name="lido:label">Source
type</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 Page 263 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:SourceTitle">

 <lido:objectNote>

 <xsl:attribute name="lido:label">Source
title</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 <xsl:for-each select="onix:PositionOnList">

 <lido:objectNote>

 <xsl:attribute name="lido:label">Position on
list</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 <xsl:for-each select="onix:ListName">

 <lido:objectNote>

 <xsl:attribute name="lido:label">Name of bestseller
list</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 Page 264 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:CitationNote">

 <lido:objectNote>

 <xsl:attribute name="lido:type">Citation
note</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 </lido:object>

 </lido:thingPresent>

 </lido:event>

 </lido:eventSet>

 </xsl:if>

 </xsl:for-each>

 <xsl:for-each select="onix:DescriptiveDetail/onix:Prize">

 <lido:eventSet>

 <lido:event>

 <lido:eventType>

 <lido:conceptID>

 <xsl:attribute
name="lido:type">Local</xsl:attribute>http://terminology.lido-
schema.org/lido00003</lido:conceptID>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>(Non-specified)</lido:term>

 </lido:eventType>

 Page 265 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:roleInEvent>

 <xsl:for-each select="onix:PrizeCode">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Prize or award achievement
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 <xsl:for-each select="onix:PrizeCode">

 <xsl:variable name="idx117" select="index-of($map116/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx117 > 0">

 <lido:term>

 <xsl:value-of select="$map116/map[$idx117]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">Prize or award
acheivement</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term></xsl:otherwise></xsl:choose>

</xsl:for-each></lido:roleInEvent>

 Page 266 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:eventName>

 <xsl:for-each select="onix:PrizeName">

 <lido:appellationValue>

 <xsl:attribute name="xml:lang">

 <xsl:for-each select="@language">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Prize or award
name</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue></xsl:for-each></lido:eventName>

 <lido:eventActor>

 <xsl:for-each select="onix:PrizeJury">

 <lido:displayActorInRole>

 <xsl:attribute name="xml:lang">

 <xsl:for-each select="@language">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Prize jury</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:displayActorInRole>

 </xsl:for-each>

 </lido:eventActor>

 Page 267 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:eventDate>

 <xsl:for-each select="onix:PrizeYear">

 <lido:displayDate>

 <xsl:attribute name="lido:label">Prize or award
year</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:displayDate>

 </xsl:for-each>

 <lido:date>

 <xsl:for-each select="onix:PrizeYear">

 <xsl:if test="position() = 1">

 <lido:earliestDate>

 <xsl:attribute name="lido:type">YYYY</xsl:attribute>

 <xsl:attribute name="lido:label">Prize or award
year</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:earliestDate>

 </xsl:if>

 </xsl:for-each>

 Page 268 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:PrizeYear">

 <xsl:if test="position() = 1">

 <lido:latestDate>

 <xsl:attribute name="lido:type">YYYY</xsl:attribute>

 <xsl:attribute name="lido:label">Prize or award
year</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:latestDate>

 </xsl:if>

 </xsl:for-each>

 </lido:date>

 </lido:eventDate>

 <lido:eventPlace>

 <lido:place>

 <xsl:for-each select="onix:PrizeCountry">

 <lido:placeID>

 <xsl:attribute name="lido:type">ISO 3166-1</xsl:attribute>

 <xsl:attribute name="lido:label">Prize or award country
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:placeID>

 </xsl:for-each>

 Page 269 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:namePlaceSet>

 <xsl:for-each select="onix:PrizeCountry">

 <xsl:variable name="idx119" select="index-of($map118/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx119 > 0">

 <lido:appellationValue>

 <xsl:value-of select="$map118/map[$idx119]/@value"/>

 </lido:appellationValue>

 </xsl:when>

 <xsl:otherwise>

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Prize or award
country</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:otherwise></xsl:choose></xsl:for-each>

 </lido:namePlaceSet></lido:place>

 </lido:eventPlace></lido:event></lido:eventSet>

 </xsl:for-each>

 Page 270 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:PublishingDetail/onix:Publisher">

 <xsl:if test="(onix:PublishingRole = '01') or (onix:PublishingRole =
'02')">

 <lido:eventActor>

 <xsl:for-each select="onix:PublisherName">

 <lido:displayActorInRole>

 <xsl:value-of select="."/>

 </lido:displayActorInRole>

 </xsl:for-each>

 <lido:actorInRole>

 <lido:actor>

 Page 271 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each
select="onix:PublisherIdentifier/onix:IDValue">

 <lido:actorID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:PublisherIDType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx121" select="index-
of($map120/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx121 > 0">

 <xsl:value-of
select="$map120/map[$idx121]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-
each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:actorID>

 </xsl:for-each>

 <lido:nameActorSet>

 <xsl:for-each select="onix:PublisherName">

 <lido:appellationValue>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </lido:nameActorSet>

 </lido:actor>

 Page 272 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:roleActor>

 <xsl:for-each select="onix:PublishingRole">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Publishing role
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 <xsl:for-each select="onix:PublishingRole">

 <xsl:variable name="idx123" select="index-of($map122/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx123 > 0">

 <lido:term>

 <xsl:value-of select="$map122/map[$idx123]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">Publishing
role</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term></xsl:otherwise></xsl:choose></xsl:for-
each>

 </lido:roleActor></lido:actorInRole></lido:eventActor>

 </xsl:if></xsl:for-each>

 Page 273 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:PublishingDetail/onix:Imprint">

 <lido:eventActor>

 <xsl:for-each select="onix:ImprintName">

 <lido:displayActorInRole>

 <xsl:attribute name="lido:label">Imprint name</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:displayActorInRole>

 </xsl:for-each>

 <lido:actorInRole>

 <lido:actor>

 <xsl:for-each select="onix:ImprintIdentifier/onix:IDValue">

 <lido:actorID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:ImprintIDType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx125" select="index-
of($map124/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx125 > 0">

 <xsl:value-of
select="$map124/map[$idx125]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-
each>

 </xsl:attribute>

 Page 274 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(../onix:IDTypeName)">

 <xsl:attribute name="lido:label">

 <xsl:for-each select="../onix:IDTypeName">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 </xsl:if>

 <xsl:value-of select="."/>

 </lido:actorID>

 </xsl:for-each>

 <lido:nameActorSet>

 <xsl:for-each select="onix:ImprintName">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Imprint
name</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </lido:nameActorSet>

 </lido:actor>

 </lido:actorInRole>

 </lido:eventActor>

 </xsl:for-each>

 Page 275 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:eventDate>

 <lido:date>

 <xsl:if
test="onix:PublishingDetail/onix:PublishingDate/onix:PublishingDateRole = '01'">

 <xsl:for-each
select="onix:PublishingDetail/onix:PublishingDate/onix:Date[../onix:PublishingDateRo
le = '01']">

 <xsl:if test="position() = 1">

 <lido:earliestDate>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="@dateformat">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if></xsl:for-each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Publication
date</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:earliestDate>

 </xsl:if></xsl:for-each></xsl:if>

 Page 276 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if
test="onix:PublishingDetail/onix:PublishingDate/onix:PublishingDateRole = '01'">

 <xsl:for-each
select="onix:PublishingDetail/onix:PublishingDate/onix:Date[../onix:PublishingDateRo
le = '01']">

 <xsl:if test="position() = 1">

 <lido:latestDate>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="@dateformat">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Publication
date</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:latestDate>

 </xsl:if></xsl:for-each></xsl:if>

 </lido:date></lido:eventDate>

 <xsl:for-each
select="onix:PublishingDetail/onix:CountryOfPublication">

 <lido:eventPlace>

 <lido:place>

 <xsl:for-each select=".">

 <lido:placeID>

 <xsl:attribute name="lido:type">ISO 3166-1</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:placeID>

 </xsl:for-each>

 Page 277 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:namePlaceSet>

 <xsl:for-each select=".">

 <xsl:variable name="idx127" select="index-of($map126/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx127 > 0">

 <lido:appellationValue>

 <xsl:value-of select="$map126/map[$idx127]/@value"/>

 </lido:appellationValue>

 </xsl:when>

 <xsl:otherwise>

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Country of
publication</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:otherwise></xsl:choose></xsl:for-each>

 </lido:namePlaceSet></lido:place></lido:eventPlace>

 </xsl:for-each>

 Page 278 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:PublishingDetail/onix:CityOfPublication">

 <lido:eventPlace>

 <xsl:for-each select=".">

 <lido:displayPlace>

 <xsl:value-of select="."/>

 </lido:displayPlace>

 </xsl:for-each>

 </lido:eventPlace>

 </xsl:for-each>

 </lido:event>

 </lido:eventSet>

 </lido:eventWrap>

 <lido:objectRelationWrap>

 <lido:subjectWrap>

 <xsl:for-each select="onix:DescriptiveDetail/onix:NameAsSubject">

 <lido:subjectSet>

 <xsl:if test="(../onix:Subject/onix:MainSubject)"/>

 <lido:subject>

 <lido:subjectActor>

 <xsl:if test="(not(onix:PersonName))">

 <xsl:for-each
select="onix:PersonNameInverted[(not(../onix:PersonName))]">

 <lido:displayActor>

 <xsl:attribute name="lido:label">Person name
inverted</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:displayActor>

 </xsl:for-each>

 </xsl:if>

 Page 279 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:CorporateName">

 <lido:displayActor>

 <xsl:attribute name="lido:label">Corporate
name</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:displayActor>

 </xsl:for-each>

 <xsl:if test="(not(onix:CorporateName))">

 <xsl:for-each
select="onix:CorporateNameInverted[(not(../onix:CorporateName))]">

 <lido:displayActor>

 <xsl:value-of select="."/>

 </lido:displayActor>

 </xsl:for-each>

 </xsl:if>

 <xsl:for-each select="onix:PersonName">

 <lido:displayActor>

 <xsl:value-of select="."/>

 </lido:displayActor>

 </xsl:for-each>

 Page 280 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:actor>

 <xsl:for-each select="onix:NameIdentifier/onix:IDValue">

 <lido:actorID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:NameIDType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx129" select="index-
of($map128/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx129 > 0">

 <xsl:value-of
select="$map128/map[$idx129]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-
each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Name identifier
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:actorID></xsl:for-each>

 <lido:nameActorSet>

 <xsl:for-each select="onix:NamesBeforeKey">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part 2:
names before key names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 281 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:PrefixToKey">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part 3:
prefix to key names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 <xsl:for-each select="onix:KeyNames">

 <lido:appellationValue>

 <xsl:attribute
name="lido:pref">preferred</xsl:attribute>

 <xsl:attribute name="lido:label">Person name part 4: key
names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 <xsl:for-each select="onix:NamesAfterKey">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part 5:
names after key names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 282 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:LettersAfterNames">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part 7:
qualifications and honors after names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 <xsl:for-each select="onix:TitlesAfterNames">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part 8:
titles after names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 <xsl:for-each select="onix:SuffixToKey">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part 6:
suffix after key names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 283 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:TitlesBeforeNames">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name part
1:titles before names</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </lido:nameActorSet></lido:actor></lido:subjectActor>

 </lido:subject></lido:subjectSet>

 </xsl:for-each>

 <xsl:for-each select="onix:DescriptiveDetail/onix:Subject">

 <lido:subjectSet>

 <xsl:if test="(onix:MainSubject)">

 <xsl:attribute name="lido:sortorder">1</xsl:attribute>

 </xsl:if>

 <lido:subject>

 <lido:subjectConcept>

 Page 284 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:SubjectCode">

 <lido:conceptID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:SubjectSchemeIdentifier">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx131" select="index-
of($map130/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx131 > 0">

 <xsl:value-of
select="$map130/map[$idx131]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-
each>

 </xsl:attribute>

 Page 285 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:attribute name="lido:label">

 <xsl:for-each select="../onix:SubjectSchemeIdentifier">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx133" select="index-
of($map132/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx133 > 0">

 <xsl:value-of
select="$map132/map[$idx133]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if>

 </xsl:for-each> version <xsl:for-each
select="../onix:SubjectSchemeVersion">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if></xsl:for-each></xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID></xsl:for-each>

 Page 286 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:SubjectHeadingText">

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="xml:lang">

 <xsl:for-each select="@language">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Subject heading
text</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:for-each>

 </lido:subjectConcept></lido:subject></lido:subjectSet>

 </xsl:for-each>

 </lido:subjectWrap>

 Page 287 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:relatedWorksWrap>

 <xsl:for-each select="onix:DescriptiveDetail/onix:Collection">

 <lido:relatedWorkSet>

 <xsl:if test="(../onix:ProductPart/onix:PrimaryPart)"/>

 <lido:relatedWork>

 <xsl:if test="(onix:TitleDetail/onix:TitleStatement)">

 <xsl:for-each
select="onix:TitleDetail/onix:TitleStatement[(.)]">

 <lido:displayObject>

 <xsl:attribute name="lido:label">Collection title
statement</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:displayObject>

 </xsl:for-each>

 </xsl:if>

 Page 288 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:object>

 <xsl:for-each select="onix:CollectionIdentifier/onix:IDValue">

 <lido:objectID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:CollectionIdentifierType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx135" select="index-
of($map134/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx135 > 0">

 <xsl:value-of
select="$map134/map[$idx135]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 Page 289 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(../onix:IDTypeName)">

 <xsl:attribute name="lido:label">

 <xsl:for-each select="../onix:IDTypeName">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 </xsl:if>

 <xsl:value-of select="."/>

 </lido:objectID>

 </xsl:for-each>

 <lido:objectNote>

 <xsl:attribute name="lido:type">Collection
title</xsl:attribute>

 <xsl:for-each
select="onix:TitleDetail/onix:TitleElement/onix:TitlePrefix">

 <xsl:value-of select="."/>

 </xsl:for-each> <xsl:for-each
select="onix:TitleDetail/onix:TitleElement/onix:TitleWithoutPrefix">

 <xsl:value-of select="."/>

 </xsl:for-each>

 </lido:objectNote>

 Page 290 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:ContributorStatement">

 <lido:objectNote>

 <xsl:attribute name="lido:type">Contributor
statement</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 <xsl:for-each select="onix:CollectionType">

 <xsl:variable name="idx137" select="index-of($map136/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx137 > 0">

 <lido:objectNote>

 <xsl:value-of select="$map136/map[$idx137]/@value"/>

 </lido:objectNote>

 </xsl:when>

 <xsl:otherwise>

 <lido:objectNote>

 <xsl:attribute name="lido:label">Collection
type</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:otherwise></xsl:choose></xsl:for-each>

 </lido:object></lido:relatedWork></lido:relatedWorkSet>

 </xsl:for-each>

 Page 291 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:ProductPart">

 <lido:relatedWorkSet>

 <xsl:if test="(onix:PrimaryPart)">

 <xsl:attribute name="lido:sortorder">1</xsl:attribute>

 </xsl:if>

 <lido:relatedWork>

 <lido:object>

 <xsl:for-each select="onix:ProductIdentifier/onix:IDValue">

 <lido:objectID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:ProductIDType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx139" select="index-
of($map138/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx139 > 0">

 <xsl:value-of
select="$map138/map[$idx139]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-
each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Product
identifier</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectID>

 </xsl:for-each>

 Page 292 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:ProductFormDetail">

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 <xsl:if
test="onix:ProductFormFeature/onix:ProductFormFeatureType = '01'">

 <xsl:for-each
select="onix:ProductFormFeature/onix:ProductFormFeatureValue[../onix:ProductFormFeat
ureType = '01']">

 <xsl:variable name="idx141" select="index-of($map140/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx141 > 0">

 <lido:objectNote>

 <xsl:value-of select="$map140/map[$idx141]/@value"/>

 </lido:objectNote>

 </xsl:when>

 <xsl:otherwise>

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:otherwise></xsl:choose></xsl:for-each></xsl:if>

 Page 293 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if
test="onix:ProductFormFeature/onix:ProductFormFeatureType = '02'">

 <xsl:for-each
select="onix:ProductFormFeature/onix:ProductFormFeatureValue[../onix:ProductFormFeat
ureType = '02']">

 <xsl:variable name="idx143" select="index-of($map142/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx143 > 0">

 <lido:objectNote>

 <xsl:value-of select="$map142/map[$idx143]/@value"/>

 </lido:objectNote>

 </xsl:when>

 <xsl:otherwise>

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:otherwise></xsl:choose></xsl:for-each></xsl:if>

 Page 294 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if
test="onix:ProductFormFeature/onix:ProductFormFeatureType = '04'">

 <xsl:for-each
select="onix:ProductFormFeature/onix:ProductFormFeatureValue[../onix:ProductFormFeat
ureType = '04']">

 <xsl:variable name="idx145" select="index-of($map144/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx145 > 0">

 <lido:objectNote>

 <xsl:value-of select="$map144/map[$idx145]/@value"/>

 </lido:objectNote>

 </xsl:when>

 <xsl:otherwise>

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:otherwise></xsl:choose></xsl:for-each></xsl:if>

 Page 295 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if
test="onix:ProductFormFeature/onix:ProductFormFeatureType = '05'">

 <xsl:for-each
select="onix:ProductFormFeature/onix:ProductFormFeatureValue[../onix:ProductFormFeat
ureType = '05']">

 <xsl:variable name="idx147" select="index-of($map146/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx147 > 0">

 <lido:objectNote>

 <xsl:value-of select="$map146/map[$idx147]/@value"/>

 </lido:objectNote>

 </xsl:when>

 <xsl:otherwise>

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:otherwise></xsl:choose></xsl:for-each></xsl:if>

 Page 296 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if
test="onix:ProductFormFeature/onix:ProductFormFeatureType = '06'">

 <xsl:for-each
select="onix:ProductFormFeature/onix:ProductFormFeatureValue[../onix:ProductFormFeat
ureType = '06']">

 <xsl:variable name="idx149" select="index-of($map148/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx149 > 0">

 <lido:objectNote>

 <xsl:value-of select="$map148/map[$idx149]/@value"/>

 </lido:objectNote>

 </xsl:when>

 <xsl:otherwise>

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:otherwise></xsl:choose></xsl:for-each></xsl:if>

 Page 297 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if
test="onix:ProductFormFeature/onix:ProductFormFeatureType = '09'">

 <xsl:for-each
select="onix:ProductFormFeature/onix:ProductFormFeatureValue[../onix:ProductFormFeat
ureType = '09']">

 <xsl:variable name="idx151" select="index-of($map150/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx151 > 0">

 <lido:objectNote>

 <xsl:value-of select="$map150/map[$idx151]/@value"/>

 </lido:objectNote>

 </xsl:when>

 <xsl:otherwise>

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:otherwise></xsl:choose></xsl:for-each></xsl:if>

 Page 298 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if
test="onix:ProductFormFeature/onix:ProductFormFeatureType = '12'">

 <xsl:for-each
select="onix:ProductFormFeature/onix:ProductFormFeatureValue[../onix:ProductFormFeat
ureType = '12']">

 <xsl:variable name="idx153" select="index-of($map152/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx153 > 0">

 <lido:objectNote>

 <xsl:value-of select="$map152/map[$idx153]/@value"/>

 </lido:objectNote>

 </xsl:when>

 <xsl:otherwise>

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:otherwise></xsl:choose></xsl:for-each></xsl:if>

 Page 299 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if
test="onix:ProductFormFeature/onix:ProductFormFeatureType = '13'">

 <xsl:for-each
select="onix:ProductFormFeature/onix:ProductFormFeatureValue[../onix:ProductFormFeat
ureType = '13']">

 <xsl:variable name="idx155" select="index-of($map154/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx155 > 0">

 <lido:objectNote>

 <xsl:value-of select="$map154/map[$idx155]/@value"/>

 </lido:objectNote>

 </xsl:when>

 <xsl:otherwise>

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:otherwise></xsl:choose></xsl:for-each></xsl:if>

 <xsl:for-each
select="onix:ProductFormFeature/onix:ProductFormFeatureDescription">

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 <xsl:for-each select="onix:ProductFormDescription">

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 Page 300 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:NumberOfItemsOfThisForm">

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 <xsl:for-each select="onix:NumberOfCopies">

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 <xsl:for-each select="onix:CountryOfManufacture">

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 <xsl:for-each select="onix:ProductContentType">

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 <xsl:for-each select="onix:ProductForm">

 <lido:objectNote>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:for-each>

 </lido:object></lido:relatedWork></lido:relatedWorkSet>

 </xsl:for-each>

 Page 301 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:RelatedMaterial/onix:RelatedProduct">

 <lido:relatedWorkSet>

 <lido:relatedWork>

 <lido:object>

 <xsl:for-each select="onix:ProductIdentifier/onix:IDValue">

 <lido:objectID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:ProductIDType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx157" select="index-
of($map156/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx157 > 0">

 <xsl:value-of
select="$map156/map[$idx157]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-
each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Product
identifier</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectID>

 </xsl:for-each>

 Page 302 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:ProductFormDetail">

 <xsl:variable name="idx159" select="index-of($map158/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx159 > 0">

 <lido:objectNote>

 <xsl:value-of select="$map158/map[$idx159]/@value"/>

 </lido:objectNote>

 </xsl:when>

 <xsl:otherwise>

 <lido:objectNote>

 <xsl:attribute name="lido:label">Product form
detail</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:otherwise></xsl:choose></xsl:for-each>

 Page 303 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:ProductForm">

 <xsl:variable name="idx161" select="index-of($map160/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx161 > 0">

 <lido:objectNote>

 <xsl:value-of select="$map160/map[$idx161]/@value"/>

 </lido:objectNote>

 </xsl:when>

 <xsl:otherwise>

 <lido:objectNote>

 <xsl:attribute name="lido:label">Product
form</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectNote>

 </xsl:otherwise></xsl:choose></xsl:for-each>

 </lido:object></lido:relatedWork>

 <lido:relatedWorkRelType>

 <xsl:for-each select="onix:ProductRelationCode">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Product relation
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

Unfortunately there is no
structural mapping to
relatedWorkRelType in
MINT so there is
currently no direct
correlation between
conceptID and term
elements taken from the
same ONIX relation type
(this should be
unproblematic once
SKOS links are added
for IDs and terms).

 Page 304 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:ProductRelationCode">

 <xsl:variable name="idx163" select="index-of($map162/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx163 > 0">

 <lido:term>

 <xsl:value-of select="$map162/map[$idx163]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">Product
relation</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise></xsl:choose></xsl:for-each>

 </lido:relatedWorkRelType></lido:relatedWorkSet>

 </xsl:for-each>

 <xsl:for-each select="onix:RelatedMaterial/onix:RelatedWork">

 <lido:relatedWorkSet>

 <lido:relatedWork>

 <lido:object>

 Page 305 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:WorkIdentifier/onix:IDValue">

 <lido:objectID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:WorkIDType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx165" select="index-
of($map164/map, normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx165 > 0">

 <xsl:value-of
select="$map164/map[$idx165]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-
each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Work
identifier</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:objectID>

 </xsl:for-each></lido:object></lido:relatedWork>

 Page 306 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:relatedWorkRelType>

 <xsl:for-each select="onix:WorkRelationCode">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:attribute name="lido:label">Work relation
code</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 Page 307 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:WorkRelationCode">

 <xsl:variable name="idx167" select="index-of($map166/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx167 > 0">

 <lido:term>

 <xsl:value-of select="$map166/map[$idx167]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute name="lido:label">Work
relation</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise></xsl:choose></xsl:for-each>

 </lido:relatedWorkRelType></lido:relatedWorkSet>

 </xsl:for-each>

</lido:relatedWorksWrap></lido:objectRelationWrap></lido:descriptiveMetadata>

 <lido:administrativeMetadata>

 <xsl:attribute name="xml:lang">en</xsl:attribute>

 <lido:rightsWorkWrap>

 <xsl:for-each select="onix:PublishingDetail/onix:CopyrightStatement">

 <lido:rightsWorkSet>

 Page 308 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:rightsType>

 <lido:term>

 <xsl:attribute name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:attribute
name="xml:lang">en</xsl:attribute>Copyright</lido:term>

 </lido:rightsType>

 <lido:rightsDate>

 <xsl:for-each select="onix:CopyrightYear">

 <xsl:if test="position() = 1">

 <lido:earliestDate>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="@dateformat">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Copyright
date</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:earliestDate>

 </xsl:if>

 </xsl:for-each>

 Page 309 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:CopyrightYear">

 <xsl:if test="position() = 1">

 <lido:latestDate>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="@dateformat">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Copyright
date</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:latestDate>

 </xsl:if>

 </xsl:for-each>

 </lido:rightsDate>

 <lido:rightsHolder>

 <xsl:for-each
select="onix:CopyrightOwner/onix:CopyrightOwnerIdentifier/onix:IDValue">

 <lido:legalBodyID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:CopyrightOwnerIDType">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 Page 310 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(../onix:IDTypeName)">

 <xsl:attribute name="lido:label">

 <xsl:for-each select="../onix:IDTypeName">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 </xsl:if>

 <xsl:value-of select="."/>

 </lido:legalBodyID>

 </xsl:for-each>

 <lido:legalBodyName>

 <xsl:for-each select="onix:CopyrightOwner/onix:CorporateName">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Corporate
name</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 Page 311 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:CopyrightOwner/onix:PersonName">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Person name</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </lido:legalBodyName>

 </lido:rightsHolder>

 </lido:rightsWorkSet>

 </xsl:for-each>

 </lido:rightsWorkWrap>

 <lido:recordWrap>

 <xsl:for-each select="onix:RecordReference">

 <lido:recordID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:recordID>

 </xsl:for-each>

 <lido:recordType>

 <xsl:for-each select="onix:DescriptiveDetail/onix:ProductComposition">

 <lido:conceptID>

 <xsl:attribute name="lido:type">Local</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:conceptID>

 </xsl:for-each>

 Page 312 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:DescriptiveDetail/onix:ProductComposition">

 <xsl:variable name="idx169" select="index-of($map168/map, normalize-
space())"/>

 <xsl:choose>

 <xsl:when test="$idx169 > 0">

 <lido:term>

 <xsl:value-of select="$map168/map[$idx169]/@value"/>

 </lido:term>

 </xsl:when>

 <xsl:otherwise>

 <lido:term>

 <xsl:attribute name="lido:addedSearchTerm">no</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:term>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </lido:recordType>

 Page 313 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:recordSource>

 <xsl:attribute name="lido:type">europeana:dataProvider</xsl:attribute>

 <xsl:for-each select="onix:RecordSourceIdentifier/onix:IDValue">

 <lido:legalBodyID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:RecordSourceIDType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx171" select="index-of($map170/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx171 > 0">

 <xsl:value-of select="$map170/map[$idx171]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:legalBodyID></xsl:for-each>

 <lido:legalBodyName>

 <xsl:for-each select="onix:RecordSourceName">

 <lido:appellationValue>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </lido:legalBodyName>

 </lido:recordSource>

 Page 314 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:recordSource>

 <xsl:for-each select="onix:RecordSourceIdentifier/onix:IDValue">

 <lido:legalBodyID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:RecordSourceIDType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx173" select="index-of($map172/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx173 > 0">

 <xsl:value-of select="$map172/map[$idx173]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-each>

 </xsl:attribute>

 <xsl:value-of select="."/>

 </lido:legalBodyID></xsl:for-each>

 <lido:legalBodyName>

 <xsl:for-each select="onix:RecordSourceName">

 <lido:appellationValue>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </lido:legalBodyName>

 </lido:recordSource>

 Page 315 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:recordRights>

 <lido:rightsType>

 <lido:conceptID>

 <xsl:attribute
name="lido:type">URI</xsl:attribute>http://creativecommons.org/publicdomain/zero/1.0
/</lido:conceptID>

 <lido:term>

 <xsl:attribute name="lido:addedSearchTerm">no</xsl:attribute>CC0
(mandatory only)</lido:term>

 </lido:rightsType>

 </lido:recordRights>

 <lido:recordRights>

 <lido:rightsDate>

 <xsl:for-each select="../onix:Header/onix:SentDateTime">

 <xsl:if test="position() = 1">

 <lido:latestDate>

 <xsl:attribute name="lido:type">ISO 8601</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:latestDate>

 </xsl:if>

 </xsl:for-each>

 </lido:rightsDate>

 Page 316 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:rightsHolder>

 <xsl:for-each select="onix:RecordSourceIdentifier/onix:IDValue">

 <lido:legalBodyID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:RecordSourceIDType">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 <xsl:attribute name="lido:label">Record source
identifier</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:legalBodyID>

 </xsl:for-each>

 <lido:legalBodyName>

 <xsl:for-each select="onix:RecordSourceName">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Record source
name</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </lido:legalBodyName>

 </lido:rightsHolder>

 </lido:recordRights>

 Page 317 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:recordRights>

 <lido:rightsDate>

 <xsl:for-each select="../onix:Header/onix:SentDateTime">

 <xsl:if test="position() = 1">

 <lido:latestDate>

 <xsl:attribute name="lido:type">ISO 8601</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:latestDate>

 </xsl:if>

 </xsl:for-each>

 </lido:rightsDate>

 <lido:rightsHolder>

 <xsl:for-each
select="../onix:Header/onix:Sender/onix:SenderIdentifier/onix:IDValue">

 <lido:legalBodyID>

 <xsl:attribute name="lido:type">

 <xsl:for-each select="../onix:SenderIDType">

 <xsl:if test="position() = 1">

 <xsl:variable name="idx175" select="index-of($map174/map,
normalize-space())"/>

 <xsl:choose>

 <xsl:when test="$idx175 > 0">

 <xsl:value-of select="$map174/map[$idx175]/@value"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise></xsl:choose></xsl:if></xsl:for-each>

 </xsl:attribute>

 Page 318 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:if test="(../onix:IDTypeName)">

 <xsl:attribute name="lido:label">

 <xsl:for-each select="../onix:IDTypeName">

 <xsl:if test="position() = 1">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

 </xsl:if>

 <xsl:value-of select="."/>

 </lido:legalBodyID>

 </xsl:for-each>

 <lido:legalBodyName>

 <xsl:for-each select="../onix:Header/onix:Sender/onix:SenderName">

 <lido:appellationValue>

 <xsl:attribute name="lido:label">Sender name</xsl:attribute>

 <xsl:value-of select="."/>

 </lido:appellationValue>

 </xsl:for-each>

 </lido:legalBodyName>

 </lido:rightsHolder>

 </lido:recordRights>

 Page 319 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <xsl:for-each select="onix:ProductSupply/onix:Supplier/onix:Website">

 <xsl:if test="(onix:WebsiteRole = '40')">

 <lido:recordInfoSet>

 <xsl:for-each select="onix:WebsiteLink">

 <lido:recordInfoLink>

 <xsl:value-of select="."/>

 </lido:recordInfoLink>

 </xsl:for-each>

 </lido:recordInfoSet>

 </xsl:if>

 </xsl:for-each>

 <xsl:for-each select="onix:PublishingDetail/onix:Publisher/onix:Website">

 <xsl:if test="onix:WebsiteRole = '40'">

 <lido:recordInfoSet>

 <xsl:for-each select="onix:WebsiteLink">

 <lido:recordInfoLink>

 <xsl:value-of select="."/>

 </lido:recordInfoLink>

 </xsl:for-each>

 </lido:recordInfoSet>

 </xsl:if>

 </xsl:for-each>

 </lido:recordWrap>

 Page 320 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:resourceWrap>

 <lido:resourceSet>

 <lido:resourceRepresentation>

 <xsl:attribute name="lido:type">image_master</xsl:attribute>

 <xsl:if
test="(onix:CollateralDetail/onix:SupportingResource/onix:ResourceContentType =
'01') and (onix:CollateralDetail/onix:SupportingResource/onix:ResourceMode = '03')
and
(onix:CollateralDetail/onix:SupportingResource/onix:ResourceVersion/onix:ResourceFor
m = '01')">

 <xsl:for-each
select="onix:CollateralDetail/onix:SupportingResource/onix:ResourceVersion/onix:Reso
urceLink[(../../onix:ResourceContentType = '01') and (../../onix:ResourceMode =
'03') and (../onix:ResourceForm = '01')]">

 <xsl:if test="position() = 1">

 <lido:linkResource>

 <xsl:value-of select="."/>

 </lido:linkResource>

 </xsl:if></xsl:for-each></xsl:if>

 </lido:resourceRepresentation>

 Page 321 of 326

LINKED HERITAGE
Deliverable D4.2

LIDO
section

LIDO
subsection

XSLT Comments

 <lido:resourceRepresentation>

 <xsl:attribute name="lido:type">image_thumb</xsl:attribute>

 <xsl:if
test="(onix:CollateralDetail/onix:SupportingResource/onix:ResourceVersion/onix:Resou
rceForm = '01') and
(onix:CollateralDetail/onix:SupportingResource/onix:ResourceContentType = '01') and
(onix:CollateralDetail/onix:SupportingResource/onix:ResourceMode = '03')">

 <xsl:for-each
select="onix:CollateralDetail/onix:SupportingResource/onix:ResourceVersion/onix:Reso
urceLink[(../onix:ResourceForm = '01') and (../../onix:ResourceContentType = '01')
and (../../onix:ResourceMode = '03')]">

 <xsl:if test="position() = 1">

 <lido:linkResource>

 <xsl:value-of select="."/>

 </lido:linkResource>

 </xsl:if></xsl:for-each></xsl:if>

 </lido:resourceRepresentation>

 <lido:rightsResource>

 <lido:rightsType>

 <lido:term>

 <xsl:attribute
name="lido:addedSearchTerm">no</xsl:attribute>http://www.europeana.eu/rights/rr-
p/</lido:term>

 </lido:rightsType>

 </lido:rightsResource>

 </lido:resourceSet>

 </lido:resourceWrap>

 </lido:administrativeMetadata>

 </lido:lido>

 </xsl:template>

</xsl:stylesheet>

File: D4-2_Specification-of-technologies-chosen.docx Page 322 of 326

LINKED HERITAGE
Deliverable D4.2

19.4 ONIX ELEMENTS NOT MAPPED

ONIX Element, Composite or
Group

Reason not included in mapping

<Barcode> Technical detail mainly for retail sales use.

<TradeCategory> Product classification for use within supply chain only (mainly for retailers).

<EpubTechnicalProtection>

<EpubUsageConstraint>

Technical details mainly useful for (online?) retailers. In any case, usage
conditions cannot be mapped to LIDO as yet.

<ProductClassification> Tax code classification for products (mainly useful to distributors,
wholesalers, retailers).

<ThesisType>

<ThesisPresentedTo>

<ThesisYear>

Most data contributions are not expected to be theses; in any case, these
ONIX elements are not widely used.

Group P.8 Conference Most data contributions are not expected to be conference proceedings.

<Complexity> Complexity (of text for readers) is not commonly provided in ONIX records
outside a small number of specific educational uses.

<ContentDetail> The ContentDetail composite describes text items within the product;
despite its potential interest for Linked Heritage, it is not widely used, nor
would it map easily to LIDO.

<ProductContact> The product contact’s role is to support supply chain functions such as
(B2B) sales and promotion, not for contact from end-customers. In any
case, contact details cannot yet be expressed in LIDO.

<SupplyDetail>

 - except: <Website>

The SupplyDetail composite is used within the supply chain to enable B2B
sales prior to retail. However, it can provide a <Website> composite
containing a B2C retail link for the product which is mapped here. This
composite may be necessary for a large-scale aggregation.

 Page 323 of 326

LINKED HERITAGE
Deliverable D4.2

20 APPENDIX 5 – GUIDELINE FOR COMMERCIAL SECTOR DATA
PROVIDERS IN LINKED HERITAGE

The following is an extract from the comprehensive response of the Linked Heritage project to
Europeana’s announced change of Data Exchange Agreement (DEA) to one including the condition that
any data contributed to Europeana can be released under the CC0 rights waiver. The paper was approved
by the project partners, and was implemented technically through a filter applied in the MINT system, at
the stage of publication to Europeana. This section was developed by the Work Group 4 partners.

Any datasets used by Work Package 4 (WP4) will come from organisations outside of the Linked Heritage
partners, as they will be sourced from the commercial sector.

20.1 CATEGORIES OF COMMERCIAL DATA CONTRIBUTIONS

The datasets will fall into 2 broad categories:

1. Test Data for use in creating mappings from commercial schemas to LIDO, ESE and EDM.

 Test Data will only be used within Linked Heritage, Work Group 4’s controlled internal
environment, seen only by Work Group 4 partners, and will not be published anywhere else,
whether inside or outside the project. It will not be available on the Web. If required, the original
Test Data files will be deleted from Work Group 4’s systems once the mappings have been
completed.

 Test Data will be used for development of appropriate metadata mapping schemas, in
consultation with the data provider and relevant recognised industry specialists (who will not,
however, receive the actual Test Data) and with reference to existing industry standards and
best practice.

 Test Data should be as large a dataset as possible, and all data items (“records” or “messages”)
within it should be as full as possible – i.e. they should include as many of the possible data
elements as possible, and ideally be “real” data identical to that used for business as usual. This
will ensure that mappings are accurate and able to handle real data in future.

2. Prototype Data for contribution to Linked Heritage and publication to Europeana, under very
strictly controlled conditions.

 Prototype Data will be used, as with the Test Data, within the controlled Work Group 4
environment, and additionally, a subset of each data item (i.e. only selected data elements from
each data item, in agreement with the data provider) will be published to www.europeana.eu for
demonstration and proof of concept. The Prototype will remain operative for a minimum of 30
days, after which, at a time specified by the data provider, Linked Heritage will instruct
Europeana to remove the Prototype Data from their Web portal and all other data stores.

 The entire Prototype Data set (i.e. all elements of data items) will be used to test the mappings
created with the Test Data as above. The Prototype Data subset will be used to

o test the data publishing interface with Europeana;
o and test the discovery of products within Europeana and the function of the link to buy

the product in a retail environment

 Prototype Data can be a relatively small dataset (a small number of data items corresponding to
a small selection of products). Each data item must, however, be a “real” item of product data as
this prototype will Therefore the Prototype Data, for every product data item supplied, must
include a link to either the provider’s Website page for that specific product where it can be
bought online, or an equivalent link to a retail/wholesale Website (selected by the data provider)
for buying that specific product.

o The operation of the Prototype will be publicised as agreed with the data provider, and
the data provider is free to advertise the fact that their products will be discoverable
within Europeana during the agreed Prototype operating period.

 Page 324 of 326

LINKED HERITAGE
Deliverable D4.2

20.2 SIGNATURE OF THE DATA EXCHANGE AGREEMENT

Every data provider will need to sign the new DEA (http://version1.europeana.eu/web/europeana-
project/newagreement/) directly with Europeana, if (and only if) they provide Prototype Data.

Therefore , each data provider should ensure that they understand the terms of this agreement and are
able and willing to allow Europeana to publish the Prototype Data subset of elements on the open Web
(through the www.europeana.eu/ search portal) and as Linked Open Data
(http://pro.europeana.eu/linked-open-data). As with the data in the search portal, we will request that
Europeana removes the Prototype Data subset from their Linked Open Data (LOD) once the Prototype
operating period has ended.

There is a small chance (given the relative size of the datasets in question compared with the whole
Europeana LOD) that this Linked Open Data may have been harvested, integrated into some other Linked
Data stores, and maybe republished elsewhere in the meantime, before it can be removed from the
Europeana LOD. Data providers should also be aware of this possibility and able to accept it for this
subset of Prototype Data elements.

File: D4-2_Specification-of-technologies-chosen.docx Page 325 of 326

LINKED HERITAGE
Deliverable D4.2

21 APPENDIX 6 – EXAMPLE OF PROPOSED ENHANCED LIDO
EXPRESSIONS

In this example, an ONIX title including a year is mapped as a non-typed concatenation to LIDO, and as
two, typed appellationValue part elements with sortorder to the proposed, enhanced LIDO. Note that the
enhanced LIDO is simply a more flexible revision of the existing version; the new enhanced schema will
still validate all of the existing LIDO data.

Schema XML

ONIX 3.0.1 <onix:TitleElement>

 <onix:SequenceNumber>1</ onix:SequenceNumber >

 <onix:TitleElementLevel>01</onix:TitleElementLevel>

 <onix:TitleText>Annual Review of Heritage
Publishing</onix:TitleText>

 </onix:TitleElement>

 <onix:TitleElement>

 <onix:SequenceNumber>2</ onix:SequenceNumber >

 <onix:TitleElementLevel>01</onix:TitleElementLevel>

 <onix:YearOfAnnual>1963</onix:YearOfAnnual>

 </onix:TitleElement>

LIDO [no mapping, or concatenation of some kind as in example below]

 <lido:titleWrap>

 <lido:titleSet>

 <lido:appellationValue> Annual Review of Heritage
Publishing (1963)</lido:appellationValue>

 </lido:titleSet>

 </lido:titleWrap>

LIDO revised <lido:titleWrap>

 <lido:titleSet>

 <lido:appellationValue lido:label ="Title text "
lido:sortorder=”1”>
 Annual Review of Heritage Publishing
 </lido:appellationValue>

 <lido:appellationValue lido:label ="Year of annual"
lido:sortorder=”2”>
 1963
 </lido:appellationValue>

 </lido:titleSet>

 </lido:titleWrap>

File: D4-2_Specification-of-technologies-chosen.docx Page 326 of 326

LINKED HERITAGE
Deliverable D4.2

22 APPENDIX 7 – DRAFT GENERALISED CONTACT DETAILS MODEL

The diagram below is a small part of the draft generalised name and address model under development
for the ONIX for Serials “toolkit” of messages and data structures153. This is a high-level model that might
inform development of further communication details in extensions to LIDO.

Existing schemas containing granular contact details information:

ONIX for Publication Licences: http://www.editeur.org/21/ONIX-PL/

EDItX: http://www.editeur.org/52/Consumer-Direct-Fulfilment/ (order message)

PLUS: http://ns.useplus.org/ldf/LDFXML-1_2_0-Schema.xsd

153

 See overview of ONIX for Serials at http://www.editeur.org/17/ONIX-for-Serials/

http://www.editeur.org/21/ONIX-PL/
http://www.editeur.org/52/Consumer-Direct-Fulfilment/
http://ns.useplus.org/ldf/LDFXML-1_2_0-Schema.xsd
http://www.editeur.org/17/ONIX-for-Serials/

